中国农业科学 ›› 2018, Vol. 51 ›› Issue (16): 3040-3059.doi: 10.3864/j.issn.0578-1752.2018.16.002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆抗大豆花叶病毒病基因研究进展

王大刚1,李凯2,智海剑2

 
  

  1. 1安徽省农业科学院作物研究所/安徽省农作物品质改良重点实验室,合肥 2300312南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,南京 210095
  • 收稿日期:2018-04-07 出版日期:2018-08-16 发布日期:2018-08-16
  • 通讯作者: 智海剑,Tel:025-84396463;E-mail:zhj@njau.edu.cn
  • 作者简介:王大刚,Tel:0551-65149851;E-mail:smvwang@163.com
  • 基金资助:
    国家自然科学基金(31571687、31571690和31201235)、安徽省自然科学基金(1708085MC69)、国家大豆产业技术体系建设专项资金(CARS-04)、江苏省现代作物生产协同创新中心(JCIC-MCP)

Progresses of Resistance on Soybean Mosaic Virus in Soybean

WANG DaGang1, LI Kai2, ZHI HaiJian2   

  1. 1Crop Institute of Anhui Academy of Agricultural Sciences/Key Laboratory of Crop Quality Improvement of Anhui Province,  Hefei 230031; 2Soybean Research Institute of Nanjing Agriculture University/National Center for Soybean Improvement/    National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095
  • Received:2018-04-07 Online:2018-08-16 Published:2018-08-16

摘要: 大豆花叶病毒(soybean mosaic virus,SMV)病是严重危害世界大豆(Glycine max (L.) Merr.)生产的主要病害之一。近十年来,国内外关于大豆对SMV抗病基因的遗传标记定位、候选抗病基因的分析及大豆抗SMV的调控网络等研究取得许多新进展。大豆对SMV的抗性遗传主要分为数量抗性和质量抗性,其中数量抗性的遗传主要由1对加性主基因+加性-显性多基因共同控制;对不同SMV株系的质量抗性遗传分别由1对不同的显性基因控制。标记定位研究发现,大豆对SMV数量抗性位点主要分布在大豆的第6、10和13等染色体上。22个对SMV具有单显性质量抗性的基因位点已被标记定位在大豆的第2、6、13和14染色体上,且定位的多数抗病基因位点两侧标记间的物理距离都在1 Mb以内。其中第13染色体上的基因位点数最多,有Rsv1、Rsv5、RSC3Q、RSC11和RSC12等10个,定位在第2染色体上的基因位点有8个,如Rsv4、RSC5、RSC6、RSC7和RSC8等,第6和14染色体上各有2个基因位点,分别为RSC15、RSC18和Rsv3、RSC4。参考大豆全基因组序列(http://www.phytozome.net/soybean),利用生物信息学方法、表达谱分析及克隆测序技术等进一步缩小了大豆抗SMV候选基因的筛选范围。目前,在大豆第2染色体上确定的抗SMV候选基因主要有8个:Glyma.02G121400、Glyma.02G121500、Glyma.02G121600、Glyma.02G121800、Glyma.02G121900、Glyma.02G122000、Glyma.02G122100和Glyma.02G122200,在第6染色体上的是Glyma.06G182600,在第13和14染色体上的抗SMV候选基因分别有9个和6个:Glyma.13G184800、Glyma.13G184900、Glyma.13G187900、Glyma.13G190000、Glyma.13G190300、Glyma.13G190400、Glyma.13G190800、Glyma.13G194700、Glyma.13G195100和Glyma.14G204500、Glyma.14G204600、Glyma.14G204700、Glyma.14G205000、Glyma.14G205200、Glyma.14G205300。基于病毒诱导的基因沉默VIGS(virus induced gene silencing,VIGS)和转基因操作等技术,研究发现抗SMV相关基因GmHSP40、GmPP2C3a、GmAKT2、GmCnx1、GmSN1、Glyma.14G204500、Glyma.14G204600、Glyma.14G204700等参与大豆对SMV的抗性,属于正调控因子;而GmEF1A和GmeIF5A等则增加大豆对SMV的易感性,为负调控因子。在综合SMV抗病基因的相关研究基础上,构建了基于Rsv1和Rsv3介导对SMV极端抗性的调控网络模型。Rsv1介导的大豆对SMV极端抗性调控模型的建立为大豆抗SMV信号网络的研究提供了新的方向。Rsv3介导的大豆对SMV极端抗性的主要机制是通过ABA信号的传导,从而使胞间连丝处的胼胝质沉积以抑制病毒从最初侵染的细胞向健康细胞的转移。本文系统综述了SMV抗病基因方面的最新研究成果并对该领域未来的研究方向进行了展望,以期为大豆抗SMV分子设计育种和抗病基因的机理研究提供参考。

关键词: 大豆, 大豆花叶病毒, 抗病基因, 标记定位, 功能研究

Abstract: Soybean mosaic virus disease, caused by soybean mosaic virus (SMV), is one of the most serous pathogens of soybean (Glycine max (L.) Merr.), which give rise to the loss of yield and quality in soybean production worldwide. During the recent decade, the studies on soybean against SMV stress have made some progress, includes the mapping of SMV resistant genes, the functional analysis of candidate resistance genes, and the progress in dissecting the SMV resistant signaling pathways in soybean. There are two kinds of resistance to SMV in soybean, quantitative resistance and qualitative resistance. The quantitative resistance to SMV is controlled by an additive major gene plus additive-dominant polygenes, and the qualitative resistance is mainly controlled by a dominant resistance gene. Research showed that the quantitative trait loci (QTL) were mainly on chromosome 6, 10 and 13. So far, 22 SMV qualitative resistance loci have been successively mapped on soybean chromosome 2, 6, 13 and 14. And most of the physical distance between the markers on both sides of the SMV resistance gene loci is within 1 Mb. Among them, there are 8 gene loci (Rsv4, RSC5, RSC6, RSC7 and RSC8 etc.) located on chromosome 2, 10 loci (Rsv1, Rsv5, RSC3Q, RSC11 and RSC12 etc.) on chromosome 13, 2 loci on chromosome 6 (RSC15 and RSC18) and 14 (Rsv3 and RSC4), respectively. According to the Williams 82 whole genomic sequence (http://www.phytozome.net/soybean), the putative candidate genes of SMV qualitative resistance loci were subsequently narrowed down based on their predicted functions, expression patterns and sequence comparison etc. Among these genes, Glyma.02G121400, Glyma.02G121500, Glyma.02G121600, Glyma.02G121800, Glyma.02G121900, Glyma.02G122000, Glyma.02G122100 and Glyma.02G122200 et al. eight genes were considered potential resistance candidate genes to SMV on chromosome 2; Glyma.06G182600 as the most promising candidate gene on chromosome 6; Glyma.13G184800, Glyma.13G184900, Glyma.13G187900, Glyma.13G190000, Glyma.13G190300, Glyma.13G190400, Glyma.13G190800, Glyma.13G194700, Glyma. 13G195100 et al. nine genes and Glyma.14G204500, Glyma.14G204600, Glyma.14G204700, Glyma.14G205000, Glyma.14G205200, Glyma.14G205300 et al. six genes were the putative candidate genes to SMV on chromosome 13 and 14, respectively. Using virus induced gene silencing (VIGS) and transgenic technology etc. analyzed the functions of the candidate genes. The results showed genes GmHSP40, GmPP2C3a, GmAKT2, GmCnx1, GmSN1, Glyma.14G204500, Glyma.14G204600 and Glyma.14G204700 can participate to SMV resistance in soybean as positive regulator. After knocked down GmEF1A and GmeIF5A, viral accumulation level of SMV and pathogenicity increased. They were considered negative regulator to SMV resistance. Based on the research results of SMV resistance gene, regulated model were built for Rsv1 and Rsv3 mediating extreme resistance (ER) against SMV. Rsv1-mediated ER has provided new insight into the soybean signaling network required for ER against SMV. The primary mechanism of Rsv3-mediated ER against viruses was the inhibition of viral cell-to-cell movement by callose deposition in an ABA signaling-dependent manner. In this report, the research progress on the mapping and function analysis of SMV resistance genes and the future research directions of SMV resistance in soybean are summarized. It will provide a basis for molecular design breeding and mechanism research of resistance genes to SMV in soybean.

Key words: soybean, soybean mosaic virus, resistance gene, marker location, functional research

[1]    李凯, 刘志涛, 李海朝, 张锴, 王成坤, 任锐, 卢为国, 智海剑. 国家大豆区域试验品种对SMV和SCN的抗性分析. 大豆科学, 2013, 32(5): 670-675.
LI K, LIU Z T, Li H C, ZHANG K, WANG C K, REN R, LU W G, ZHI H J. Resistance to soybean mosaic virus and soybean cyst nematode of soybean cultivars from China national soybean uniform trials. Soybean Science, 2013, 32(5): 670-675. (in Chinese)
[2]    王大刚, 智海剑, 张磊. 大豆抗大豆花叶病毒研究进展. 中国油料作物学报, 2013, 35(3): 341-348.
WANG D G, ZHI H J, ZHANG L. Review on resistance to soybean mosaic virus in soybean. Chinese Journal of Oil Crop Sciences, 2013, 35(3): 341-348. (in Chinese)
[3]    李凯, 智海剑. 大豆对大豆花叶病毒病抗性的研究进展. 大豆科学, 2016, 35(4): 525-530.
LI K, ZHI H J. Advances in resistance to soybean mosaic virus disease in soybean. Soybean Science, 2016, 35(4): 525-530. (in Chinese)
[4]    智海剑, 盖钧镒. 大豆对SMV数量抗性的表现形式与种质鉴定. 中国农业科学, 2004, 37(10): 1422-1427.
ZHI H J, GAI J Y. Performances and germplasm evaluation of quantitative resistance to soybean mosaic virus in soybeans. Scientia Agricultura Sinica, 2004, 37(10): 1422-1427. (in Chinese)
[5]    智海剑, 盖钧镒, 何小红. 大豆对SMV数量(程度)抗性的综合分级方法研究. 大豆科学, 2005, 24(2): 5-11.
ZHI H J, GAI J Y, HE X H. Study on methods of classification of quantitative resistance to soybean mosaic virus in soybean. Soybean Science, 2005, 24(2): 5-11. (in Chinese)
[6]    郭丹丹, 陈海峰, 杨中路, 单志慧, 朱晓玲, 陈水莲, 周新安, 周蓉. 大豆对SMV SC-3株系的抗性遗传和QTL分析. 大豆科学, 2012, 31(4): 511-516.
GUO D D, CHEN H F, YANG Z L, SHAN Z H, ZHU X L, CHEN S L, ZHOU X A, ZHOU R. Analysis of resistance inheritance to soybean mosaic virus (SMV) strain SC-3 and mapping related QTL in soybean. Soybean Science, 2012, 31(4): 511-516. (in Chinese)
[7]    KIIHL R A S, HARTWIG E E. Inheritance of reaction to a soybean mosaic virus in soybeans. Crop Science, 1979, 19(3): 372-375.
[8]    LIM S M. Resistance to soybean mosaic virus in soybeans. Phytopathology, 1985, 75(2): 199-201.
[9]    陈怡, 杜维广, 栾晓燕, 张桂茹, 黄承运, 满为群, 谷秀芝, 王彬 如. 大豆对两个大豆花叶病毒株系的抗性遗传研究. 黑龙江农业科学, 1991(5): 21-24.
CHEN Y, DU W G, LUAN X Y, ZHANG G R, HUANG C Y, MAN W Q, GU X Z, WANG B R. Inheritance of resistance to two soybean mosaic virus strains in soybean. Heilongjiang Agricultural Sciences, 1991(5): 21-24. (in Chinese)
[10]   李海朝, 智海剑, 白丽, 杨华, 马莹, 刘宁, 王大刚. 大豆对SMV株系SC-11的抗性遗传及抗性基因的等位性研究. 大豆科学, 2006, 25(4): 365-368.
LI H C, ZHI H J, BAI L, YANG H, MA Y, LIU N, WANG D G. Studies on inheritance and allelism of resistance genes to SMV strain SC-11 in soybean. Soybean Science, 2006, 25(4): 365-368. (in Chinese)
[11]   白丽, 李海朝, 马莹, 王大刚, 刘宁, 智海剑. 大豆对大豆花叶病毒SC11株系抗性的遗传及基因定位. 大豆科学, 2009, 28(1): 1-6.
BAI L, LI H C, MA Y, WANG D G, LIU N, ZHI H J. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC11 in soybean. Soybean Science, 2009, 28(1): 1-6. (in Chinese)
[12]   王大刚, 马莹, 刘宁, 郑桂杰, 杨中路, 杨永庆, 智海剑. 大豆花叶病毒(SMV)株系SC4和SC8的抗性遗传分析. 作物学报, 2012, 38(2): 202-209.
WANG D G, MA Y, LIU N, ZHENG G J, YANG Z L, YANG Y Q, ZHI H J. Inheritance of resistances to soybean mosaic virus strains SC4 and SC8 in soybean. Acta Agronomica Sinica, 2012, 38(2): 202-209. (in Chinese)
[13]   BUZZELL R I, TU J C. Inheritance of soybean resistance to soybean mosaic virus. Heredity, 1984, 75(1): 82.
[14]   CHEN P Y, BUSS G R, TOLIN S A. Resistance to soybean mosaic virus conferred by two independent dominant genes in PI486355. Journal of Heredity, 1993, 84(1): 25-28.
[15]   Yu Y G, SAGHAI MAROOF M A, BUSS G R, MAUGHAN P J, TOLIN S A. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology, 1994, 84(1): 60-64.
[16]   GUNDUZ I, BUSS G R, MA G, CHEN P Y, TOLIN S A. Genetic analysis of resistance to soybean mosaic virus in OX670 and Harosoy soybean. Crop Science, 2001, 41(6): 1785-1791.
[17]   GUNDUZ I, BUSS G R, CHEN P Y, TOLIN S A. Genetic and phenotypic analysis of soybean mosaic virus resistance in PI88788 soybean. Phytopathology, 2004, 94(7): 687-692.
[18]   GORE M A, HAYES A J, JEONG S C, YUE Y G, BUSS G R, SAGHAI MAROOF M A. Mapping tightly linked genes controlling potyvirus infection at the Rsv1 and Rpv1 region in soybean. Genome, 2002, 45(3): 592-599.
[19]   JEONG S C, KRISTIPATI S, HAYES A J, MAUGHAN P J, NOFFSINGER S L, GUNDUZ I, BUSS G R, SAGHAI MAROOF M A. Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene, Rsv3. Crop Science, 2002, 42(1): 265-270.
[20]   CHEN P Y, BUSS G R, TOLIN S A, GUNDUZ I, CICEK M. A valuable gene in Suweon 97 soybean for resistance to soybean mosaic virus. Crop Science, 2002, 42(2): 333-337.
[21]   WANG Y, NELSON R L, HU Y. Genetic analysis of resistance to soybean mosaic virus in four soybean cultivars from China. Crop Science, 1998, 38(4): 922-925.
[22]   CHEN P Y, MA G, BUSS G R, GUNDUZ I, ROANE C W, TOLIN S A. Inheritance and allelism tests of Raiden soybean for resistance to soybean mosaic virus. Journal of Heredity, 2001, 92(1): 51-55.
[23]   GUNDUZ I, BUSS G R, MA G, CHEN P Y, TOLIN S A. Genetic and phenotypic analysis of soybean mosaic virus resistance in PI88788 soybean. Phytopathology,2004, 94(7): 687-692.
[24]   JEONG S C, SAGHAI MAROOGF M A. Detection and genotyping of SNPs tightly linked to two disease resistance loci, Rsv1 and Rsv3, of soybean. Plant Breeding, 2004, 123(4): 305-310.
[25]   SHI A N, CHEN P Y, LI D X, ZHENG C M, HOU A F, ZHANG B. Genetic confirmation of two independent genes for resistance to soybean mosaic virus in J05 soybean using SSR markers. Journal of Heredity, 2008, 99(6): 598-603.
[26]   SUH S J, BOWMAN B C, JEONG N, YANG K, KASTL C, TOLIN S A, SAGHAI MAROOF M A, JEONG S C. The Rsv3 locus conferring resistance to soybean mosaic virus is associated with a cluster of coiled-coil nucleotide-binding leucine-rich repeat genes. Plant Genome, 2011, 4(1): 55-64.
[27]   ILUT D C, LIPKA A E, JEONG N, BAE D N, KIM D H, KIM J H, REDEKAR N, YANG K, PARK W, KANG S T, KIM N, MOON J K, SAGHAI MAROOF M A, GORE M A, JEONG S C. Identification of haplotypes at the Rsv4 genomic region in soybean associated with durable resistance to soybean mosaic virus. Theoretical & Applied Genetics, 2016, 129(3): 453-468.
[28]   KLEPADLO M, CHEN P Y, SHI A N, MASON R E, KORTH K L, SRIVASTAVA V S, WU C J. Two tightly linked genes for soybean mosaic virus resistance in soybean. Crop Science, 2017, 57(4): 1-10.
[29]   FU S X, ZHAN Y, ZHI H J, GAI Y J, YU D Y. Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica, 2006, 128(1/3): 63-69.
[30]   LI H C, ZHI H J, GAI J Y, GUO D Q, WANG Y W, LI K, LI B, YANG H. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC14 in soybean. Journal of Integrative Plant Biology, 2006, 48(12): 1466-1472.
[31]   MA Y, LI H C, WANG D G, LIU N, ZHI H J. Molecular mapping and marker assisted selection of soybean mosaic virus resistance gene RSC12 in soybean. Legume Genomics & Genetics, 2010, 1(8): 41-46.
[32]   MA Y, WANG D G, LI H C, ZHENG G J, YANG Y Q, LI H W, ZHI H J. Fine mapping of the RSC14Q locus for resistance to soybean mosaic virus in soybean. Euphytica, 2011, 181(1): 127-135.
[33]   WANG D G, MA Y, YANG Y Q, LIU N, LI C Y, SONG Y P, ZHI H J. Fine mapping and analyses of RSC8 resistance candidate genes to soybean mosaic virus in soybean. Theoretical & Applied Genetics, 2011, 122(3): 555-565.
[34]   WANG D G, MA Y, LIU N, YANG Z L, ZHENG G J, ZHI H J. Fine mapping and identification of the soybean RSC4 resistance candidate gene to soybean mosaic virus. Plant Breeding, 2011, 130(6): 653-659.
[35]   YANG Q H, GAI J Y. Identification, inheritance and gene mapping of resistance to a virulent soybean mosaic virus strain SC15 in soybean. Plant Breeding, 2011, 130(2): 128-132.
[36]   李春燕, 杨永庆, 王大刚, 李华伟, 郑桂杰, 王涛, 智海剑. 大豆对SMV株系SC10的抗性遗传及抗病基因的定位研究. 中国农业科学, 2012, 45(21): 4335-4342.
LI C Y, YANG Y Q, WANG D G, LI H W, ZHENG G J, WANG T, ZHI H J. Studies on mapping and inheritance of resistance genes to SMV strain SC10 in soybean. Scientia Agricultura Sinica, 2012, 45(21): 4335-4342. (in Chinese)
[37]   YANG Y Q, ZHENG G J, HAN L, WANG D G, YANG X F, YUAN Y, HUANG S H, ZHI H J. Genetic analysis and mapping of genes for resistance to multiple strains of soybean mosaic virus in a single resistant soybean accession PI96983. Theoretical & Applied Genetics, 2013, 126(7): 1783-1791.
[38]   阳小凤, 杨永庆, 郑桂杰, 智海剑, 李晓红. 大豆对大豆花叶病毒株系SC6和SC17抗病基因的精细定位. 作物学报, 2013, 39(2): 216-221.
YANG X F, YANG Y Q, ZHENG G J, ZHI H J, LI X H. Fine mapping of resistance genes to SMV strains SC6 and SC17 in soybean. Acta Agronomica Sinica, 2013, 39(2): 216-221. (in Chinese)
[39]   ZHENG G J, YANG Y Q, MA Y, YANG X F, CHEN S Y, REN R, WANG D G, YANG Z L, ZHI H J. Fine mapping and candidate gene analysis of resistance gene RSC3Q to soybean mosaic virus in Qihuang 1. Journal of Integrative Agriculture, 2014, 13(12): 2608-2615.
[40]   LI K, REN R, ADHIMOOLAM K, GAO L, YUAN Y, LIU Z T, ZHONG Y K, ZHI H J. Genetic analysis and identification of two soybean mosaic virus resistance genes in soybean [Glycine max (L.) Merr]. Plant Breeding, 2015, 134(6): 684-695.
[41]   YAN H L, WANG H, CHENG H, HU Z B, CHU S S, ZHANG G Z, YU D Y. Detection and fine-mapping of SC7 resistance genes via linkage and association analysis in soybean. Journal of Integrative Plant Biology, 2015, 57(8): 722-729.
[42]   LI C, ADHIMOOLAM K, YUAN Y, YIN J L, REN R, YANG Y Q, ZHI H J. Identification of candidate genes for resistance to soybean mosaic virus strain SC3by using fine mapping and transcriptome analyses. Crop & Pasture Science, 2017, 68(2): 156-166.
[43]   ZHAO L, WANG D G, ZHANG H Y, SHEN Y C, YANG Y Q, LI K, WANG L Q, YANG Y H, ZHI H J. Fine mapping of the RSC8 locus and expression analysis of candidate SMV resistance genes in soybean. Plant Breeding, 2016, 135(6): 701-706.
[44]   ADHIMOOLAM K, LI K, JIANG H, REN R, LI G, ZHI H J, CHEN S Y, GAI J Y. Inheritance, fine-mapping, and candidate gene analyses of resistance to soybean mosaic virus strain SC5in soybean. Molecular Genetics & Genomics, 2017, 292(4): 811-822.
[45]   ADHIMOOLAM K, LI K, LI C, YIN J L, LI N, YANG Y H, SONG Y P, REN R, ZHI H J, GAI J Y. Fine-mapping and identifying candidate genes conferring resistance to soybean mosaic virus strain SC20 in soybean. Theoretical & Applied Genetics, 2018, 131(2): 461-476.
[46]   REN R, LIU S C, ADHIMOOLAM K, WANG T, NIU H P, YIN J L, YANG Y H, WANG L Q, YANG Q H, ZHI H J, LI K. Fine-mapping and identification of a novel locus Rsc15 underlying soybean resistance to soybean mosaic virus. Theoretical & Applied Genetics, 2017, 130(11): 2395-2410.
[47]   李凯, 任锐, 王涛, 高乐, 落金艳, 刘士超, 智海剑, 盖钧镒. 大豆对大豆花叶病毒SC18株系的抗性遗传和基因定位. 大豆科学, 2017, 36(2): 187-192.
LI K, REN R, WANG T, GAO L, LUO J Y, LIU S C, ZHI H J, GAI J Y. Genetic analysis and mapping of soybean mosaic virus resistance genes to SC18 in soybean. Soybean Science, 2017, 36(2): 187-192. (in Chinese)
[48]   MA F F, WU X Y, CHEN Y X, LIU Y N, SHAO Z Q, WU P, WU M, LIU C C, WU W P, YANG J Y, LI D X, CHEN J Q, WANG B. Fine mapping of the Rsv1-h gene in the soybean cultivar Suweon 97 that confers resistance to two Chinese strains of the soybean mosaic virus. Theoretical & Applied Genetics, 2016, 129(11): 2227-2236.
[49]   HAYES A J, MA G, BUSS G R, SAGHAI MAROOF A S. Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus. Crop Science, 2000, 40(5): 1434-1437.
[50]   HWANG T Y, MOON J K, YU S, YANG K, MOHANKUMAR S, YU Y H, LEE Y H, KIM S H, KIM H M, SAGHAI MAROOF M A, JEONG S C. Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean. Genome, 2006, 49(4): 380-388.
[51]   SAGHAI MAROOF M A, TUCKER D M, SKONECZKA J A, BOWMEN B C, TRIPATHY S, TOLIN S A. Fine mapping and candidate gene discovery of the soybean mosaic virus resistance gene, Rsv4. Plant Genome, 2010, 3(1): 14-22.
[52]   CHEN P Y, BUSS G R, ROANE C W, TOLIN S A. Allelism among genes for resistance to soybean mosaic virus in strain-differential soybean cultivars. Crop Science, 1991, 31(2): 305-309.
[53]   LI K, YANG Q H, ZHI H J, GAI J Y. Identification and distribution of soybean mosaic virus strains in Southern China. Plant Disease, 2010, 94(3): 351-357.
[54]   王大刚, 田震, 李凯, 李华伟, 黄志平, 胡国玉, 张磊, 智海剑. 鲁豫皖大豆产区大豆花叶病毒株系的鉴定及动态变化分析. 大豆科学, 2013, 32(6): 806-809.
WANG D G, TIAN Z, LI K, LI H W, HUANG Z P, HU G Y, ZHANG L, ZHI H J. Identification and variation analysis of soybean mosaic virus strains in Shandong, Henan and Anhui provinces of China. Soybean Science, 2013, 32(6): 806-809. (in Chinese)
[55]   蔡春梅, 姜骁, 赵春梅, 马建新. 中国大豆花叶病毒SC7外壳蛋白基因的序列测定及其与美国株系的比较. 病毒学报, 2014, 30(5): 489-494.
CAI C M, JIANG X, ZHAO C M, MA J X. Sequence analysis of the coat protein gene of Chinese soybean mosaic virus strain SC7and comparison with those of SMV strains from the USA. Chinese Journal of Virology, 2014, 30(5): 489-494. (in Chinese)
[56]   郭东全, 王延伟, 智海剑, 盖钧镒, 李海朝, 李凯. 大豆对SMV SC-13株系群的抗性遗传及基因定位的研究. 大豆科学, 2007, 26(1): 21-24.
GUO D Q, WANG Y W, ZHI H J, GAI J Y, LI H C, LI K. Inheritance and gene mapping of resistance to SMV strain group SC-13in soybean. Soybean Science, 2007, 26(1): 21-24. (in Chinese)
[57]   CHE Z J, LIU H L, YI F L, CHENG H, YANG Y M, WANG L, DU J Y, ZHANG P P, WANG J, YU D Y. Genome-wide association study reveals novel loci for SC7 resistance in a soybean mutant panel. Frontiers in Plant Science, 2017, 8: 1-12.
[58]   HAYES A J, JEONG S C, GORE M A, YU Y G, BUSS G R, TOLIN S A, SAGHAI MAROOF M A. Recombination within a nucleotide- binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans. Genetics,2004, 166(1): 493-503.
[59]   SHAO Z Q, ZHANG Y M, HANG Y Y, XUE J Y, ZHOU G C, WU P, WU X Y, WU X Z, WANG Q, WANG B, CHEN J Q. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiology, 2014, 166(1): 217-234.
[60]   REDEKAR N R, CLEBINGER E M, LASKAR M A, BIYASHEV R M, ASHFIELD T, JENSEN R V, JEONG S C, TOLIN S A, SAGHAI MAROOF M A. Candidate gene sequence analyses toward identifying Rsv3-type resistance to soybean mosaic virus. Plant Genome, 2016, 9(2): 1-12.
[61]   贺超英, 张志永, 陈受宜. 大豆中NBS类抗性基因同源序列的分离与鉴定. 科学通报, 2001, 46(12): 1017-1021.
HE C Y, ZHANG Z Y, CHEN S Y. Isolation and identification of NBS type resistance gene analogs in soybean. Chinese Science Bulletin, 2001, 46(12): 1017-1021. (in Chinese)
[62]   WANG B J, WANG Y J, WANG Q, LUO G Z, ZHANG Z G, HE C Y, HE S J, ZHANG J S, GAI J Y, CHEN S Y. Characterization of an NBS-LRR resistance gene homologue from soybean. Journal of Plant Physiology, 2004, 161(7): 815-822.
[63]   HE C Y, TIAN A G, ZHANG J S, ZHANG Z Y, GAI J Y, CHEN S Y. Isolation and characterization of a full-length resistance gene homolog from soybean. Theoretical & Applied Genetics, 2003, 106(5): 786-793.
[64]   WANG Y J, LI Y D, TIAN A G, WANG H WM ZHANG J S, CHR S Y. Cloning and characterization of an HDZip I gene GmHZ1 from soybean. Planta, 2005, 221(6): 831-843.
[65]   CHENG H, YANG H, ZHANG D, GAI J Y, YU D Y. Polymorphisms of soybean isoflavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance. Molecular Breeding, 2010, 25(1): 13-24.
[66]   ZHANG G Y, CHEN M, CHEN X P, XU Z S, LI L C, GUO J M, MA Y Z. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Molecular Biology Reports, 2010, 37(2): 809-818.
[67]   陈华涛, 陈新, 顾和平, 张红梅, 袁星星, 崔晓燕. 大豆GmPR10基因克隆与植物表达载体的构建. 江苏农业学报, 2011, 27(3): 494-499.
CHEN H T, CHEN X, GU H P, ZHANG H M, YUAN X X, CUI X Y. Cloning and plant expression vector construction of GmPR10 in soybean. Jiangsu Journal of Agricultural Sciences, 2011, 27(3): 494-499. (in Chinese)
[68]   HE H L, YANG X D, XUN H W, LOU X , LI S Z, ZHANG Z B, JIANG L L, DONG Y S, WANG S C, PANG J S, LIU B. Over-expression of GmSN1 enhances virus resistance in Arabidopsis and soybean. Plant Cell Reports, 2017, 36(9): 1441-1455.
[69]   LIU J Z, HORSTMAN H D, BRAUM E, GRAHAM M A, ZHANG C, NAVARRE D, QIU L W, LEE Y, NETTLETON D, HILL J H, WHITHAM S A. Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiology,2011, 157(3): 1363-1378.
[70]   LIU J Z, BRAUN E, QIU W L, SHI Y F, MARCELINO- GUIMARAES F C, NAVARRE D, HILL J H, WHITHAM S A. Positive, and negative roles for soybean MPK6 in regulating defense responses. Molecular Plant-Microbe Interactions, 2014, 27(8): 824-834.
[71]   LIU J Z, WHITHAM S A. Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. The Plant Journal, 2013, 74(1): 110-121.
[72]   SEO J K, KWON S J, CHO W K, CHOI H S, KIM K H. Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Scientific Reports, 2014, 4: 5905-5913.
[73]   ZHOU L, HE H L, LIU R F, HAN Q, SHOU H X, LIU B. Overexpression of GmAKT2 potassium channel enhances resistance to soybean mosaic virus. BMC Plant Biology, 2014, 14(1): 154-165.
[74]   ZHOU Z, HE H L, MA L P, YU X Q, MI Q, PANG J S, TANG G X, LIU B. Overexpression of a GmCnx1 gene enhanced activity of nitrate reductase and aldehyde oxidase, and boosted mosaic virus resistance in soybean. Plos One, 2015, 10(4): 1-15.
[75]   LI N, YIN J L, LI C, WANG D G, YANG Y Q, ADHIMOOLAM K, LUAN H X, ZHI H J. NB-LRR gene family required for Rsc4- mediated resistance to soybean mosaic virus. Crop and Pasture Science, 2016, 67(5): 541-552.
[76]   TRAN P T, WIDYASARI K, SEO J K, KIM K H. Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to soybean mosaic virus. Virology, 2017, 513: 153-159.
[77]   LUAN H X, SHINE M B, CUI X Y, CHEN X, MA N, KACHROO P, ZHI H J, KARCHROO A. The potyviral P3 protein targets eukaryotic elongation factor 1A to promote the unfolded protein response and viral pathogenesis. Plant Physiology, 2016, 172(1): 221-234.
[78]   CHEN H, ARSOVSKI A A, Yu K F, Wang A M. Deep sequencing leads to the identification of eukaryotic translation initiation factor 5a as a key element in Rsv1-mediated lethal systemic hypersensitive response to soybean mosaic virus infection in soybean. Molecular Plant Pathology, 2016, 18(3): 391-404.
[79]   ZHANG C Q, GROSIC S, WHITHAM S A, HILL J H. The requirement of multiple defense genes in soybean Rsv1-mediated extreme resistance to soybean mosaic virus. Molecular Plant-Microbe Interactions, 2012, 25(10): 1307-1313.
[80]   FU D Q, GHABRIAL S, KACHROO A. GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Molecular Plant-Microbe Interactions, 2009, 22(1): 86-95.
[81]   LI W L, ZHAO Y S, LIU C J, YAO G B, WU S S, HOU C Y, ZHANG M C, WANG D M. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of soybean mosaic virus. Plant Cell Reports, 2012, 31(5): 905-916.
[82]   SAGHAI MAROOF M A, JEONG S C, GUNDUZ I, TOLIN S. Pyramiding of soybean mosaic virus resistance genes by marker-assisted selection. Crop Science, 2008, 48(2): 517-526.
[83]   SHI A N, CHEN P Y, LI D X, ZHENG C M, ZHANG B, HOU A F. Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Molecular Breeding, 2009, 23(1): 113-124.
[84]   WANG D G, ZHAO L, LI K, MA Y, WANG L Q, YANG Y Q, YANG Q H, ZHI H J. Marker-assisted pyramiding of soybean resistance genes RSC4, RSC8, and RSC14Qto soybean mosaic virus. Journal of Integrative Agriculture, 2017, 16(11): 2413-2420.
[85]   郑桂杰. 齐黄1号对大豆花叶病毒抗性基因的精细定位、育种应用及候选基因表达分析[D]. 南京: 南京农业大学, 2012.
ZHENG G J. Fine mapping, expression analysis and breeding application of resistance genes to soybean mosaic virus in Qihuang No.1[D]. Nanjing: Nanjing Agriculture University, 2012. (in Chinese)
[86]   徐冉, 石传娥, 张礼凤, 王彩洁, 聂翠琴, 李建和. 黄淮海大豆优异种质齐黄1号的育种应用. 植物遗传资源学报, 2004, 5(2): 170-175.
XU R, SHI C E, ZHANG L F, WANG C J, NIE C Q, LI J H. Utilization of Qihuang 1 in soybean breeding in the Huanghuaihai region. Journal of Plant Genetic Resources, 2004, 5(2): 170-175. (in Chinese)
[87]   张孟臣, 张磊, 刘学义, 李卫东. 黄淮海大豆改良种质. 北京: 中国农业出版社, 2014.
ZHANG M C, ZHANG L, LIU X Y, LI W D. Huanghuaihai soybean improvement germplasm. Beijing: China Agriculture Press, 2014. (in Chinese)
[88]   CHOI B K, KOO J M, AHN H J, YUM H J, CHOI C W, RYU K H, CHEN P Y, TOLIN S A. Emergence of Rsv-resistance breaking soybean mosaic virus isolates from Korean soybean cultivars. Virus Research, 2005, 112(1): 42-51.
[89]   KOO J M, CHOI B K, AHN H J, YUM H J, CHOI C W. First report of an Rsv resistance-breaking isolate of soybean mosaic virus in Korea. Plant Pathology, 2005, 54(4): 573.
[90]   SARUTA M, KIKUCHI A, OKABE A, SASAYA T. Molecular characterization of A2 and D strains of soybean mosaic virus, which caused a recent virus outbreak in soybean cultivar Sachiyutaka in Chugoku and Shikoku regions of Japan. Journal of General Plant Pathology, 2005, 71(6): 431-435.
[91]   GAGARINOVA A G, BABU M, POYSA V, HILL J H, WANG A M. Identification and molecular characterization of two naturally occurring soybean mosaic virus isolates that are closely related but differ in their ability to overcome Rsv4 resistance. Virus Research, 2008, 138(1/2): 50-56.
[92]   WANG Y, HAJIMORAD M R. Gain of virulence by soybean mosaic virus on Rsv4-genotype soybeans is associated with a relative fitness loss in a susceptible host. Molecular Plant Pathology, 2016, 17(7): 1154-1159.
[93]   YANG Y Q, LIN J, ZHENG G J, ZHANG M C, ZHI H J. Recombinant soybean mosaic virus is prevalent in Chinese soybean fields. Archives of Virology, 159(7): 1793-1796.
[94]   YANG Y Q, GONG J W, LI H W, LI C Y, WANG D G, LI K, ZHI H J. Identification of a novel soybean mosaic virus isolate in China that contains a unique5' terminus sharing high sequence homology with bean common mosaic virus. Virus Research, 2011, 157(1): 13-18.
[95]   ZHOU G C, SHAO Z Q, MA F F, WU P, WU X Y, XIA Z Y, YU D Y, CHENG H, LIU Z H, JIANG Z F, CHEN Q S, WANG B, CHEN J Q. The evolution of soybean mosaic virus: An updated analysis by obtaining 18 new genomic sequences of Chinese strains/isolates. Virus Research, 2015, 208: 189-198.
[96]   董英山. 中国野生大豆研究进展. 吉林农业大学学报, 2008, 30(4): 394-400.
DONG Y S. Advances of research on wild soybean in China. Journal of Jilin Agricultural University, 2008, 30(4): 394-400. (in Chinese)
[97]   WEN Z X, DING Y L, ZHAO T J, GAI J Y. Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theoretical & Applied Genetics, 2009, 119(2): 371-381.
[98]   ZHOU Z K, JIANG Y, WANG Z, GOU Z H, YU J L, LI W Y, YU Y J, SHU L P, ZHAO Y J, MA Y M, FANG C, SHEN Y T, LIU T F, LI C C, GAO Y D, XIANG H, ZHU B G, LEE S H, WANG W, TIAN Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015, 33(4): 408-414.
[1] 任胜茂,邓榆川,文凤君,Sajad Hussain,蒲全明,于晓波,刘卫国,杨文钰. 套作对大豆苗期茎秆纤维素合成相关糖类物质转化的影响及其与叶片光合的关系[J]. 中国农业科学, 2018, 51(7): 1272-1282.
[2] 曾维英,孙祖东,赖振光,蔡昭艳,陈怀珠,杨守臻,唐向民. 大豆抗豆卷叶螟的转录组和蛋白质组关联分析[J]. 中国农业科学, 2018, 51(7): 1244-1260.
[3] 牛陆,赵倩倩,杨静,邢国杰,张伟,贺红利,杨向东. 过表达酵母PAC1增强转基因大豆对大豆花叶病毒的抗性[J]. 中国农业科学, 2018, 51(2): 217-225.
[4] 李淑贤,刘卫国,高阳,刘婷,周涛,杜勇利,杨欢,张浩,刘俊豆,杨文钰. 硅对人工荫蔽胁迫下大豆幼苗生长及光合特性的影响[J]. 中国农业科学, 2018, 51(19): 3663-3672.
[5] 王莎莎,崔晓霞,黄颜众,轩慧冬,郭娜,邢邯. 大豆GmWRKY148的克隆与功能分析[J]. 中国农业科学, 2018, 51(18): 3445-3454.
[6] 张瀛东,孔详超,黄文坤,孔令安,李红梅,彭焕,彭德良. 大豆孢囊线虫扩展蛋白新基因(Hg-exp-1、Hg-exp-2)的鉴定及功能分析[J]. 中国农业科学, 2018, 51(17): 3302-3314.
[7] 赵婉莹,于太飞,杨军峰,刘沛,陈隽,陈明,周永斌,马有志,徐兆师,闵东红. 大豆GmbZIP16的抗旱功能验证及分析[J]. 中国农业科学, 2018, 51(15): 2835-2845.
[8] 朱雅婧,周亚丽,刘骕骦,魏家萍,刘小林,沈英姿,赵海红,麻浩. GmHMADP参与高温高湿下大豆种子活力形成及铜镉胁迫响应的研究[J]. 中国农业科学, 2018, 51(14): 2642-2654.
[9] 程亚娇,谌俊旭,王仲林,范元芳,陈思宇,李泽林,刘沁林,李中川,杨峰,杨文钰. 光强和光质对大豆幼苗形态及光合特性的影响[J]. 中国农业科学, 2018, 51(14): 2655-2663.
[10] 杨枫, 陈传武, 范七君, 石春梅, 谢宗周, 郭大勇, 刘继红. 温度和多胺对柑橘溃疡病发生的影响及作用机制[J]. 中国农业科学, 2018, 51(10): 1899-1907.
[11] 柯丹霞,李祥永,王磊,程琳,刘永辉,李小艳,王慧芳. 大豆GmHAT5的克隆及其转基因百脉根的抗盐分析[J]. 中国农业科学, 2017, 50(9): 1559-1570.
[12] 周丽,付智丹,杜青,陈平,杨文钰,雍太文. 减量施氮对玉米/大豆套作系统中作物氮素吸收及土壤氨氧化与反硝化细菌多样性的影响[J]. 中国农业科学, 2017, 50(6): 1076-1087.
[13] 孙祖东,张志鹏,蔡昭艳,曾维英,赖振光,陈怀珠,杨守臻,唐向民,苏燕竹,盖钧镒. 大豆耐荫性评价体系的建立与中国南方大豆资源耐荫性变异[J]. 中国农业科学, 2017, 50(5): 792-801.
[14] 吴杨,高慧纯,张必弦,张海玲,王全伟,刘鑫磊,栾晓燕,马岩松. 24-表油菜素内酯对盐碱胁迫下大豆生育、生理及细胞超微结构的影响[J]. 中国农业科学, 2017, 50(5): 811-821.
[15] 孔佑宾,李喜焕,张彩英. 大豆紫色酸性磷酸酶基因GmPAP4启动子结构与活性分析[J]. 中国农业科学, 2017, 50(3): 582-590.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李少昆, 王克如, 谢瑞芝, 明博. 机械粒收推动玉米生产方式转型[J]. 中国农业科学, 2018, 51(10): 1842 -1844 .
[2] 叶明旺,张春芝,黄三文. 二倍体栽培马铃薯高效遗传转化体系的建立[J]. 中国农业科学, 2018, 51(17): 3249 -3257 .
[3] 李莉,杜鑫,张丽娜,杨柳,高晓庆,唐东雪,赵海源,蒋晓梅,张天舒,李金祥. 重组禽流感病毒H7N9 H7-Re1株培养条件的优化[J]. 中国农业科学, 2018, 51(17): 3415 -3426 .
[4] 张剑硕,马金姣,张彤,陈悦,魏健,张柳,史佳楠,徐珊,燕高伟, 杜铁民,窦世娟,李莉云,刘丽娟,刘国振 . 水稻蛋白质样品资源库RiceS-A300的建立与应用[J]. 中国农业科学, 2018, 51(19): 3625 -3638 .
[5] 李淑贤,刘卫国,高阳,刘婷,周涛,杜勇利,杨欢,张浩,刘俊豆,杨文钰. 硅对人工荫蔽胁迫下大豆幼苗生长及光合特性的影响[J]. 中国农业科学, 2018, 51(19): 3663 -3672 .
[6] 陈先敏,梁效贵,赵雪,高震,吴巩,申思,林珊,周丽丽,周顺利. 历年国审玉米品种产量和品质性状变化趋势分析[J]. 中国农业科学, 2018, 51(21): 4020 -4029 .
[7] 随龙龙,田景山,姚贺盛,张鹏鹏,梁福斌,王进,张旺锋. 播期温度对新疆膜下滴灌棉花出苗率及苗期生长的影响[J]. 中国农业科学, 2018, 51(21): 4040 -4051 .