中国农业科学 ›› 2018, Vol. 51 ›› Issue (8): 1431-1447.doi: 10.3864/j.issn.0578-1752.2018.08.002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子萌发期响应干旱胁迫的基因表达谱分析

许冰霞,尹美强,温银元,裴帅帅,柯贞进,张彬,原向阳   

  1. 山西农业大学农学院,山西太谷030801
  • 收稿日期:2017-11-03 出版日期:2018-04-16 发布日期:2018-04-16
  • 通讯作者: 尹美强,Tel:15935411700;E-mail:yinmq999@163.com
  • 作者简介:许冰霞,Tel:18734450502;E-mail:1986984710@qq.com
  • 基金资助:
    山西省重点研发计划(201603D221003-2)、作物生态与旱作栽培生理山西省重点实验室项目(201705D111007)、山西省科技重点研发项目(2015-TN-09)

Gene Expression Profiling of Foxtail Millet (Setaria italica L.) Under Drought Stress During Germination

XU BingXia, YIN MeiQiang, WEN YinYuan, PEI ShuaiShuai, KE ZhenJin, ZHANG Bin, YUAN XiangYang   

  1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2017-11-03 Online:2018-04-16 Published:2018-04-16

摘要: 【目的】谷子是一种耐旱作物,通过二代测序技术获得大量的谷子萌发期响应干旱胁迫的差异基因,进而挖掘谷子萌发期抵御干旱的关键基因及其相关的分子机制。【方法】以晋谷45为材料,谷子萌发期分别用18%PEG-6000干旱胁迫(处理组)和蒸馏水(对照组)处理种子并测定1、10和18 h种子的SOD、POD和CAT活性。SOD活性用氮蓝四唑(NBT)法测定,POD活性用愈创木酚法测定,CAT活性用比色法测定;对萌发10和18 h种子的对照组和处理组构建cDNA文库并进行差异基因表达谱分析;利用Bowtie将reads比对到参考基因组,采用RSEM对bowtie的比对结果进行表达量估计;使用DESeq进行差异表达基因分析;利用NR、Swiss-Prot、KEGG、COG和GO在线数据库对差异基因进行功能注释,挖掘调控谷子萌发的关键基因;利用qRT-PCR验证测序结果的可靠性。【结果】处理组的SOD活性整体比对照组高,而POD活性和CAT活性与之相反;随着萌发时间的变化,SOD活性在不断地增加,但CAT和POD活性逐渐减小。基因表达谱序列与所选参考基因组序列高度一致,基因表达呈现出高度不均一性。通过高通量测序最后获得35 470个基因,以RPKM≥0.01为筛选标准,对照样本中分别筛选出24 030和24 486个表达基因,PEG干旱胁迫处理10和18 h的样本分别筛选出24 019和23 877个表达基因;差异表达基因分析表明,谷子萌发10和18 h分别筛选出456和545个差异基因,其中87和267个上调表达基因,369和278个下调表达基因;GO功能显著性富集分析表明,差异基因主要涉及代谢过程,细胞进程和响应刺激;KEGG富集分析表明,差异基因参与到苯丙烷代谢和植物激素信号转导过程;通过qRT-PCR对5个差异基因在干旱胁迫下种子萌发时的表达分析表明,其表达趋势与表达谱分析结果基本一致。【结论】差异表达基因广泛涉及到糖、蛋白质、核酸等生物大分子代谢、次生代谢和能量代谢等过程;SnRK2和PAL可能在干旱胁迫下调节种子的萌发。

关键词: 谷子, 干旱胁迫, 种子萌发, 基因表达谱

Abstract: 【Objective】Foxtail millet (Setaria italica L.) is a drought tolerant crop. The objective of this research is to get a lot of differently expressed genes during germination in response to drought stress by high-throughput sequencing, then to obtain the key gene and the related molecular mechanism at seed germination stage in foxtail millet under drought stress.【Method】Seed of JinGu45 was treated with 18%PEG-6000(PEG-stress)and distilled water germination(control sample) at 1 h, 10 h and 18 h as a test material, and the activities of SOD, POD and CAT were measured, respectively. SOD activity was assayed by nitro blue tetrazolium (NBT) method. POD activity was determined by guaiacol method, and the activity of CAT was measured by colorimetric method. Sample of control and PEG-stress that germinated for 10h and 18h were used to construct cDNA library by gene expression profiling technology. We compared reads to the reference genome by using Bowtie and analysed the result by using RSEM. Differential expression analysis used DESeq. The functional annotation of differently expresse genes were obtained by using NR, Swiss-Prot, KEGG, COG and GO online databases. The key genes that regulate germination in foxtail millet was obtained through analyse DEGs. The reliability of sequencing results was comfirmed by qRT-PCR. 【Result】The SOD activity of PEG-stress sample was higher than that in the control sample, but the activity of POD and CAT were lower than that in the control group. With the time of germination changes, the activity of SOD was increased, but the activity of CAT and POD was gradually decreased. The sequences of gene expression profile was highly consistent with the selected reference genome sequence, and the gene expression was highly heterogeneous. Expression analysis showed a total of 35470 genes, and with the selection criteria of RPKM ≥0.01, there were 24030 and 24 486 genes in the control samples and 24 019 and 23 877 genes in the samples under PEG drought stress, respectively. 456 and 545 DEGs were screened out during millet germination at 10h and 18h under drought stress, in which 87 and 267 DEGs were up-regulated and 369 and 278 DEGs were down-regulated. GO enrichment analysis showed that these DEGs were mainly relating to metabolism process, cell stimulation and response process. The KEGG enrichment analysis showed that these DEGs were associated with phenylpropanoid metabolism and plant hormone signal transduction. The results obtained from five genes tested by RT-PCR agreed with the trend of regulation identified by gene expression profile. 【Conclusion】DEGs were widely involved in the metabolism of biomacromolecule such as sugar, protein, nucleic acid, secondary metabolism and energy metabolism. SnRK2 and PAL genes may regulate seed germination in foxtail millet under drought stress.

Key words: foxtail millet (Searia italic L.), drought stress, seed germination, gene expression profile

[1]    LATA C, PRASAD M. Setaria genome sequencing: an overview. Journal of Plant Biochemistry and Biotechnology, 2013, 22(3): 257-260.
[2]    张雁明, 刘晓东, 马建萍, 温琪汾, 韩渊怀. 谷子抗旱研究进展. 山西农业科学, 2013, 41(3): 282-285.
ZHANG Y M, LIU X D, MA J P, WEN Q F, HAN Y H. Research progress on drought resistance in foxtail millet(Setaria Italica L.). Journal of Shanxi Agricultural Sciences, 2013, 41(3): 282-285. (in Chinese)
[3]    崔纪菡, 范佳兴, 李顺国, 赵宇, 刘猛, 宋世佳, 任晓利, 刘斐, 南春梅, 夏雪岩. 谷子抗旱性鉴定研究进展. 东北农业大学学报, 2017, 48(1): 89-96.
CUI J H, FAN J X, LI S G, ZHAO Y, LIU M, SONG S J, REN X L, LIU P, NAN C M, XIA X Y. Research advance on evaluation of drought resistance of Setaria italica. Journal of Northeast Agricultural University, 2017, 48(1): 89-96. (in Chinese)
[4]    裴帅帅, 尹美强, 温银元, 黄明镜, 张彬, 郭平毅, 王玉国, 原向阳. 不同品种谷子种子萌发期对干旱胁迫的生理响应及其抗旱性评价. 核农学报, 2014, 28(10): 1897-1904.
PEI S S, YIN M Q, WENG Y Y, HUANG M J, ZHANG B, GUO P Y, WANG Y G, YUAN X Y. Physiological response of foxtail millet to drought stress during seed germination and drought resistance evaluation. Journal of Nuclear Agricultural Sciences, 2014, 28(10): 1897-1904. (in Chinese)
[5]    代小冬, 杨育峰, 朱灿灿, 鲁晓民, 王春义, 杨晓平, 杨国红, 李君霞. 谷子萌芽期对干旱胁迫的响应及抗旱性评价. 华北农学报, 2015, 30(4): 139-144.
DAI X D, YANG Y F, ZHU C C, LU X M, WANG C Y, YANG X P, YANG G H, LI J X. Seed germination response to drought stress and drought resistance evaluation of foxtail millet. Acta agriculturae boreali-sinica, 2015, 30(4): 139-144. (in Chinese)
[6]    LATA C, GUPTA S, PRASAD M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology, 2012, 33(3): 328-343.
[7]    BENNETZEN J L, SCHMUTZ J, WANG H, PERCIFIELD R, HAWKINS J, PONTAROLI A C, ESTEP M, FENG L, VAUGHN J N, GRIMWOOD J, JENLINS J, BARRY K, LINDQUIST E, HELLSTEN U, DESHPANDE S, WANG X, WU X, MITROS T, TRIPLETT J, YANG X, YE C Y, MAURO-HERRERA M, WANG L, LI P, SHARMA M, SHARMA R, RONALD P C, PANAUD O, KELLOGG E A, BRUTNELL T P, DOUST A N, TUSKAN G A, ROKHSAR D, DEVOS K M R. eference genome sequence of the model plant setaria. Nature Biotechnology, 2012, 30(6): 555-561.
[8]    ZHANG G, LIU X, QUAN Z, CHENGG S, XU X, PAN S, XIE M, ZENG P, YUE Z, WANG W, TAO Y, BIAN C, HAN C, XIA Q, PENG X, CAO R, YANG X, ZHAN D, HU J, ZHANG Y, LI H, LI H, LI N, WANG J, WANG C, WANG R, GUO T, CAI Y, LIU C, XIANG H, SHI Q, HUANG P, CHEN Q, LI Y, WANG J, ZHAO Z, WANG J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30: 549-554.
[9]    赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013, 39(2): 360-367.
ZHAO J F, YU A L, TIAN G, DU Y W, GUO E H, DIAO X M. Identification of CBL genes from foxtail millet (Setaria italica [L.] Beauv.) and its expression under drought and salt stresses. Acta Agronomica sinica, 2013, 39(2): 360-367. (in Chinese)
[10]   LATA C, SAHU P P, PRASAD M. Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochemical & Biophysical Research Communications, 2010, 393(4): 720-727.
[11]   崔润丽, 智慧, 王永芳, 李伟, 李海权, 黄占景, 刁现民. 谷子DnaJ蛋白基因的克隆. 华北农学报, 2007, 22(4): 9-13.
CUI R L, ZHI H, WANG Y F, LI W, LI H Q, HUANG Z J, DIAO X M. Cloning of DnaJ-like protein gene from foxtail millet. Acta agriculturae boreali-sinica, 2007, 22(4): 9-13. (in Chinese)
[12]   杨希文, 胡银岗. 谷子DREB转录因子基因的克隆及其在干旱胁迫下的表达模式分析. 干旱地区农业研究, 2011, 29(5): 69-74.
YANG X W, HU Y G. Cloning of a DREB gene from foxtail millet (Setaria italica L.) and its expression during drought stress. Agricultural Research in the Arid Areas, 2011, 29(5): 69-74. (in Chinese)
[13]   张彬, 禾璐, 候蕊, 路阳, 马芳芳, 王兴春, 杨致荣, 韩渊怀, 李红英. 谷子C2H2型锌指蛋白基因SiZFP182的克隆及表达分析. 中国农业大学学报, 2015, 20(5): 9-15.
ZHANG B, HE L, HOU R, LU Y, MA F F, WANG X C, YANG Z R, HAN Y H, LI H Y. Isolation and functional analysis of a C2H2-type zinc finger protein gene SiZFP182 in foxtail millet. Journal of China Agricultural university, 2015, 20(5): 9-15. (in Chinese)
[14]   窦祎凝, 秦玉海, 闵东红, 张小红, 王二辉, 刁现民, 贾冠清, 徐兆师, 李连城, 马有志, 陈明.谷子转录因子SiNAC18通过ABA信号途径正向调控干旱条件下的种子萌发. 中国农业科学, 2017, 50(16): 3071-3081.
DOU Y N, QIN Y H, MIN D H, ZHANG X H, WANG E H, DIAO X M, JIA G Q, XU Z S, LI L C, MA Y Z, CHEN M. Transcription factor SiNAC18 positively regulates seed germination under drought stress through ABA signaling pathway in Foxtail Millet (Setaria italic L.). Scientia Agricultura Sinica, 2017, 50(16): 3071-3081. (in Chinese)
[15]   王一帆, 李臻, 潘教文, 李颖秀, 王庆国, 管延安, 刘炜. 谷子SiRLK35基因克隆及功能分析.遗传, 2017, 39(5): 413-422.
WANG Y F, LI Z, PAN J W, LI Y X, WANG Q G, GUAN Y A, LIU W. Cloning and functional analysis of the SiRLK35 gene in Setaria italic L.. Hereditas (Beijing), 2017, 39(5): 413-422. (in Chinese)
[16]   LANGMEAD B, TRAPNELL C. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3): R25.
[17]   MORTAZAVI A, WILLIAMS B A, MCCUE K, SCHAEFFER L, WOLD B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628.
[18]   Anders S, Huber W. Differential expression analysis for sequence count data. Genome biology, 2010, 11(10): R106.
[19]   邓泱泱, 荔建琦, 吴松锋, 朱云平, 陈耀文, 贺福初. nr数据库分析及其本地化. 计算机工程, 2006, 32(5): 71-74.
DENG Y Y, LI J Q, WU S F, ZHU Y P, CHEN Y W, HE F Z. Integrated nr database in protein annotation system and its localization. Computer Engineering, 2006, 32(5): 71-74. (in Chinese)
[20]   APWEILER R, BAIROCH A, WU C H, BARKER W C, BOECKMANN B, FERRO S, GASTEIGER E, HUANG H, LOPEZ R, MAGRANE M, MARTIN M J, NATALE D A, O'DONOVAN C, REDASCHI N, YEH L S. UniProt: the universal protein knowledgebase. Nucleic acids research, 2004, 32: D115-D119.
[21]   ASHBURNER M, BALL C A, BLAKE J A, BOTSTEIN D, BUTLER H, CHERRY J M, DAVIS A P, DOLINSKI K, DWIGHT S S, EPPIG J T, HARRIS M A, HILL D P, ISSEL-TARVER L, KASARSKIS A, LEWIS S, MATESE J C, RICHARDSON J E, RINGWALD M, RUBIN G M, SHERLOCK G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Geneicst,2000,25(1): 25-29.
[22] TATUS R L, GALPERIN M Y, NATALE D A, KOONIN E V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Reserch,2000,28(1): 33-36.
[23]   KANEHISA M, GOTO S, KAWASHIMA S, OKUNO Y, HATTORI M. The KEGG resource for deciphering the genome. Nucleic Acids Reserch, 2004(32): D277-D280.
[24]   ALEXA A, RAHNENFUHRER J. topGO: enrichment analysis for gene ontology. R package version 2.8, 2010.
[25]   李莉, 赵越, 马君兰. 苯丙氨酸代谢途径关键酶: PAL、C4H4、CL研究新进展. 生物信息学, 2007, 5(4): 187-189.
LI L, ZHAO Y, MA J L. Recent progress on key enzymes: PAL, C4H, 4CL of phenylalanine metabolism pathway. China Journal of Bioinformatics, 2007, 5(4): 187-189. (in Chinese)
[26]   徐晓梅, 杨署光. 苯丙氨酸解氨酶研究进展. 安徽农业科学, 2009, 37(31): 15115-15119.
XU X M, YANG S G. Advances in the studies of phenylalanine ammonialyase. Journal of Anhui Agricultural. Science, 2009, 37(31): 15115-15119. (in Chinese)
[27]   HUANG J, GU M, LAI Z, FAN B, SHI K, ZHOU Y H, YU J Q, CHEN Z. Functional analysis of the Arabidopsis PAL gene family in plant growth,development, and response to environmental stress. Plant Physiology, 2010, 153(4): 1526.
[28]   Bailly C. Active oxygen species and antioxidants in seed biology. Seed Science Research, 2004, 14: 93-107.
[29]   QIE L F, JIA G Q, ZHANG W Y, JAMES S, SHANG Z L, LI W, LIU B H, LI M Z, CHAI Y, ZHI H, DIAO X M. Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross setaria italic×setaria viridis. PLoS One, 2014, 9(7): e101868 .
[30]   TANG S, LI L, WANG Y Q, CHEN Q N, ZANG W Y, JIA G Q, ZHI H, ZHAO B H, DIAO X M. Genotype specific physiological and transcriptomic responses to drought stress in Setaria italic (an emerging model for Panicoideae grasses). Scientific Reports, 2017, 7(1): 10009.
[31]   杨静, 毛笈华, 于永涛, 李春艳, 王永飞, 胡建广. 低温对甜玉米种子氧化酶活性的影响及相关基因表达分析. 核农学报, 2016, 30(9): 1840-1847.
YANG J, MAO J H, YU Y T, LI C Y, WANG Y F, HU J G. Effects of chilling on antioxidant enzyme activity and related gene expression levels during seed germination.Journal of Nuclear Agricultural Sciences, 2016,30(9): 1840-1847. (in Chinese)
[32]   MIRANSARI M, SMITH D L. Plant hormones and seed germination. Environmental & Experimental Botany, 2014, 99(3): 110-121.
[33]   SHU K, LIU X D, XIE Q, HE Z H. Two faces of one seed: Hormonal regulation of dormancy and germination. Molecular plant, 2016, 9(1): 34-45.
[34]   LOIC R, MANUAL D, KARINE G, JULIE C, JULIA B, CLAUDETTE J, DOMINIQUE J.Seed germination and vigor. Annual reviews, 2012, 63: 507-533.
[35]   LEONIE B, MAARTEN K. Seed Dormancy and Germination. The Arabidopsis Book, 2008, 12(30): e0119.
[36]   FUJII H, ZHU J K, JAGENDORF A T. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8380-8385.
[37]   FUJII H, VERSLUES P E, ZHU J K. Identification of two protein kinases Required for abscisic acid regulation of seed germination, root growth and gene expression in Arabidopsis. The Plant Cell, 2007, 19(2): 485-494.
[38]   FUJII H, ZHU J K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(4): 1717-1722.
[39]   COLEBROOK E H, THOMAS S G, PHILLIPS A L, HEDDEN P. The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology, 2014, 217(1): 67-75.
[1] 薛红丽,杨军军,汤沙,智慧,王蕊,贾冠清,乔治军,刁现民. 谷子穗顶端败育突变体sipaa1的表型分析和基因定位[J]. 中国农业科学, 2018, 51(9): 1627-1640.
[2] 任世龙,白辉,王永芳,全建章,董志平,李志勇,邢继红. 谷瘟病菌无毒基因型鉴定及分析[J]. 中国农业科学, 2018, 51(6): 1079-1088.
[3] 曹雄军,卢晓鹏,熊江,李静,谢深喜. 枳NLP转录因子响应干旱胁迫并与NRE顺式作用元件互作[J]. 中国农业科学, 2018, 51(17): 3370-3378.
[4] 贾小平,袁玺垒,李剑峰,张博,张小梅,郭秀璞,陈春燕. 不同光温条件谷子资源主要农艺性状的综合评价[J]. 中国农业科学, 2018, 51(13): 2429-2441.
[5] 宁蕾, 王曙光, 琚鹏举, 柏星轩, 葛林豪, 齐欣, 姜奇彦, 孙现军, 陈明, 孙黛珍. 过表达谷子SiANT1对水稻耐盐性的影响[J]. 中国农业科学, 2018, 51(10): 1830-1841.
[6] 李国瑜,丛新军,秦岭,邹仁峰,杨延兵,颜丽美,陈二影,李妮,管延安. 播期对夏谷幼穗分化及叶龄指数的影响[J]. 中国农业科学, 2017, 50(4): 612-624.
[7] 张婷,师志刚,王根平,高翔,夏雪岩,杨伟红,张喜瑞,田晓建,程汝宏,刁现民. 华北夏谷区2001—2015年谷子育种变化[J]. 中国农业科学, 2017, 50(23): 4475-4485.
[8] 刁现民,程汝宏. "谷子糜子育种"专题导读:十五年区试数据分析展示谷子糜子育种现状[J]. 中国农业科学, 2017, 50(23): 4469-4474.
[9] 王智兰,杜晓芬,王军,杨慧卿,王兴春,郭二虎,王玉文,袁峰,田岗,刘鑫,王秋兰,李会霞,张林义,彭书忠. 谷子SiARGOS1的克隆、表达分析和功能标记开发[J]. 中国农业科学, 2017, 50(22): 4266-4276.
[10] 宋霄君,张敏,武雪萍,赵城,石剑,张玉春,刘希伟,蔡瑞国. 干旱胁迫对小麦不同品种胚乳淀粉结构和理化特性的影响[J]. 中国农业科学, 2017, 50(2): 260-271.
[11] 窦祎凝,秦玉海,闵东红,张小红,王二辉,刁现民,贾冠清,徐兆师,李连城,马有志,陈明. 谷子转录因子SiNAC18通过ABA信号途径正向调控干旱条件下的种子萌发[J]. 中国农业科学, 2017, 50(16): 3071-3081.
[12] 杨小龙,须晖,李天来,王蕊. 外源褪黑素对干旱胁迫下番茄叶片光合作用的影响[J]. 中国农业科学, 2017, 50(16): 3186-3195.
[13] 陈彦清,曹永生,陈丽娜,方沩. 基于地统计分析方法的谷子种质资源品质与农艺相关性状的空间分区研究[J]. 中国农业科学, 2017, 50(14): 2658-2669.
[14] 杨慧杰,原向阳,郭平毅,董淑琦,张丽光,温银元,宋喜娥,王宏富. 油菜素内酯对阔世玛胁迫下谷子叶片光合荧光特性及糖代谢的影响[J]. 中国农业科学, 2017, 50(13): 2508-2518.
[15] 熊炜,杨波,刘薇茵,王荃,孔晓聪,靳亚军,梁闪闪,栾维江,张泗举. 水稻顺式还原酮加双氧酶基因的表达分析及功能研究[J]. 中国农业科学, 2017, 50(12): 2199-2208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!