中国农业科学 ›› 2018, Vol. 51 ›› Issue (5): 821-834.doi: 10.3864/j.issn.0578-1752.2018.05.002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米株型相关性状的全基因组关联分析

刘坤1,张雪海1,孙高阳1,闫鹏帅1,郭海平1,陈思远2,薛亚东1,郭战勇1,谢惠玲1,汤继华1,李卫华1

 
  

  1. 1河南农业大学农学院/省部共建小麦玉米作物学国家重点实验室,郑州450002;2郑州市第一中学,郑州 450002
  • 收稿日期:2017-09-26 出版日期:2018-03-01 发布日期:2018-03-01
  • 通讯作者: 李卫华,Tel:0371-63558122;E-mail:liwh416@163.com
  • 作者简介:刘坤,E-mail:lkun2017@163.com。张雪海,E-mail:xuehai85@126.com。刘坤和张雪海为同等贡献作者。
  • 基金资助:
    国家自然科学基金(U1604231)、河南省重大科技专项(161100110500)、河南省科技攻关项目(152102110060)

Genome-Wide Association Studies of Plant Type Traits in Maize

LIU Kun1, ZHANG XueHai1, SUN GaoYang1, YAN PengShuai1, GUO HaiPing1, CHEN SiYuan2, XUE YaDong1, GUO ZhanYong1, XIE HuiLing1, TANG JiHua1, LI WeiHua1   

  1. 1College of Agronomy, HenanAgriculturalUniversity/Key Laboratory of Wheat and Maize Crops Science, Zhengzhou 450002; 2No.1 Middle School of Zhengzhou, Zhengzhou 450002
  • Received:2017-09-26 Online:2018-03-01 Published:2018-03-01

摘要: 【目的】玉米株型性状与植株产量、光合效率、抗倒性等密切相关,是理想株型设计育种的基础,通过对玉米多个株型相关性状进行全基因组关联分析,构建玉米理想株型,为抗倒伏、耐密性的玉米新品种选育提供理论基础。【方法】以284份温带、亚热带和热带材料组成的关联群体为研究对象,在郑州与浚县2个环境下对玉米总叶片数(LN)、穗上叶片数(LNAN)、穗上叶片数与总叶片数比值(LNAN/LN)、株高(PH)、穗位高(EH)、穗位高与株高的比值(EH/PH)等6个玉米株型相关性状进行调查,借助覆盖玉米全基因组约56万个SNP标记,进行全基因组关联分析,以期为玉米新品种的选育提供理论依据。【结果】2个环境下,6个性状均表现为正态分布;大多数性状之间均存在高度正相关或负相关;方差分析表明这6个株型相关性状的基因型与环境以及基因型×环境的互作均达到显著水平。在选择最优关联分析模型时,发现Q模型假阳性较高,Q+K模型对假阳性的控制过于严格,而K模型的表现最好;在2个环境下,全基因组关联分析(K模型)共检测到56个显著SNP-性状关联(P≤3.99E-6),这些SNPs共涉及5个性状的17个位点,每个位点解释的表型变异从7.97%—10.56%不等。同时发现有4个位点能够在2个环境中同时被检测到,表明这4个位点受环境影响较小,在不同环境下可以稳定存在。通过对显著关联的SNP上下游各50 kb范围内候选基因进行搜索,共发现80个候选基因,其中42个具有功能注释。例如,与株高和穗位高显著相关的基因GRMZM2G161293编码一个具有乙酰葡糖转移酶活性的蛋白,该酶催化UDP-N-乙酰氨基葡萄糖生成糖过程中的N-乙酰葡糖氨基残基的转移,可能通过影响玉米籽粒可溶性糖含量进而影响产量,推测其为最可能的候选基因。【结论】K模型对假阳性的控制效果最好,基于K模型的GWAS结果,一共检测到17个株型性状相关的位点。

关键词: 玉米(Zea maysGWAS), 株型性状, 理想株型 L.), 全基因组关联分析(

Abstract: 【Objective】 Plant morphological traits are the basis of ideotype-based maize breeding which are closely related to photosynthetic efficiency, lodging resistance and grain yields. Genome-wide association studies (GWAS) of 558 629 SNPs with genome-wide coverage was used to elucidate the genetic basis of six plant morphological traits, including total number of leaves (LN), leaf number above ear (LNAN), the ratio of LNAN to LN (LNAN/LN), plantheight (PH), earheight (EH) and the ratio of EH to PH (EH/PH), which could provide theoretical basis in enhancing ideotype-based maize breeding and facilitating the genetic improvement of new maize varieties with high plant density and lodging resistance. 【Method】 In this study, a representative panel of 284 inbred lines planted in Zhengzhou and Xunxian, including temperate, subtropical and tropical materials, were used for association mapping.【Result】 All traits measured in the two locations exhibited an approximately normal distribution. Highly positive or negative correlations between paired traits were observed. Variance analysis of these traits indicated that significant variations were observed across environment, genotype and the genotype × environment interaction. When test with the optimal GWAS model, we found that Q model showed high type I errors (false positive), while Q+K model were too strict in reducing false positive. K model is the best in reducing false positive. Totally, 56 significant SNP-trait associations involving in 17 loci were identified for five traits (P≤3.99E-6), each locus can explain phenotypic variation ranging from 7.97% to 10.56%. Moreover, four loci were detected in both environments, indicating that these 4 loci were less affected by environment effects and could be stable in different environments. All potential candidate genes and their annotations within 100 kb (50 kb upstream and downstream of the lead SNP) of the loci were identified, in total, 80 candidate genes were found, including 42 genes that have functional annotation. For example,the gene GRMZM2G161293 encoding a protein that has acetylgluco-saminyl transferase is associated with plant height and ear height. It catalyzes the transfer of the amino group from N-acetyl glucosamine to glucose, which may improve yield by influencing the content of soluble sugars in maize kernels.【Conclusion】 The results indicated that K model having the best result in reducing the type I errors (false positive). Based on K model, a total of 17 loci associated with plant morphological traits were identified.

Key words: maize (Zea mays L.), genome-wide association study, plant type traits, ideotype

[1]    Donald M. Breeding of crop ideotypes. Euphytica, 1968, 17(3): 385-403.
[2]    汤继华, 谢惠玲, 黄绍敏, 胡彦民, 刘宗华, 季洪强, 寇志安. 缺氮条件下玉米自交系叶绿素含量与光合效率的变化. 华北农学报, 2005, 20(5): 10-12.
TANG J H, XIE H L, HUANG S M, HU Y M, LIU Z H, JI H Q, KOU Z A. The changes of the content for chlorophyll and photosynthetic productivity in maize inbred lines under the low-nitrogen stress. Acta Agriculturae Boreali-Sinica, 2005, 20(5): 10-12. (in Chinese)
[3]    何坤辉, 常立国, 崔婷婷, 渠建洲, 郭东伟, 徐淑兔, 张兴华, 张仁和, 薛吉全, 刘建超. 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016, 49(8): 1443-1452.  
HE K H, CHANG L G, CUI T T, QU J Z, GUO D W, XU S T, ZHANG X H, ZHANG R H, XUE J Q, LIU J C. Mapping QTL for plant height and ear height in maize under multi-environments. Scientia Agricultura Sinica, 2016, 49(8): 1443-1452. (in Chinese)
[4]    殷鹏程. 玉米株高和穗位高的QTL定位[D]. 武汉: 华中农业大学, 2015.
YIN P C. QTL mapping of plant height and ear height in maize[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
[5]    杨俊品, 荣廷昭, 向道权, 唐海涛, 黄烈建, 戴景瑞. 玉米数量性状基因定位. 作物学报, 2005, 31(2): 188-196.
YANG J P, RONG T Z, XIANG D Q, TANG H T, HUANG L J, DAI J R. QTL mapping of quantitative traits in maize. Acta Agronomica Sinica, 2005, 31(2): 188-196. (in Chinese)
[6]    曹永国, 王国英, 王守才, 魏艳玲, 卢江, 谢友菊, 戴景瑞. 玉米RFLP遗传图谱的构建及矮生基因定位. 科学通报, 1999, 44(20): 2178-2182.
CAO Y G, WANG G Y, WANG S C, WEI Y L, LU J, XIE Y J, DAI J R. Construction and localization of dwarf gene RFLP genetic map of maize. Chinese Science Bulletin, 1999, 44(20): 2178-2182. (in Chinese)
[7]    兰进好, 李新海, 高树仁, 张宝石, 张世煌. 不同生态环境下玉米产量性状QTL分析. 作物学报, 2005, 31(10): 1253-1259. 
LAN J H, LI X H, GAO S R, ZHANG B S, ZHANG S H. QTL analysis of yield components in maize under different environments. Acta Agronomica Sinica, 2005, 31(10): 1253-1259. (in Chinese)
[8]    许诚, 王彬, 毛克举, 胡彦民, 谢惠玲, 汤继华. 利用单片段代换系群体定位玉米株型性状QTL. 玉米科学, 2014, 22(2): 28-34. 
XU C, WANG B, MAO K J, HU Y M, XIE H L, TANG J H. QTL mapping for plant-type related traits using single segment substitution lines in maize. Journal of Maize Sciences, 2014, 22(2):28-34. (in Chinese)
[9]    张志明, 赵茂俊, 荣廷昭, 潘光堂. 玉米SSR连锁图谱构建与株高及穗位高QTL定位. 作物学报, 2007, 33(2): 341-344.
ZHANG Z M, ZHAO M J, RONG T Z, PAN G T. SSR linkage map construction and qtl identification for plant height and ear height in maize (Zea mays L). Acta Agronomica Sinica, 2007, 33(2): 341-344. (in Chinese)
[10]   Xing A, Gao Y, Ye L F,CAI L CHING A, LLACA V, JOHNSON B, LIU L, YANG X H, KANG D M, YAN J B, LI J S. A rare SNP mutation in brachytic2 moderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015, 66(13): 3791-3802.  
[11]   Teng F, Zhai L, Liu R, BAI W, WANG L, HUO D, TAO Y, ZHENG Y, ZHANG Z. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant Journal for Cell & Molecular Biology, 2013, 73(3): 405-416. 
[12]   YANG N, LU Y, YANG X, HUANG J, ZHOU Y, ALI F, WEN W, LIU J, LI J, YAN J. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. Plos Genetics, 2014, 10(9): e1004573.
[13]   PAN Q, XU Y, LI K, PENG Y, ZHAN W, LI W, LI L, YAN J. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiology, 2017, 175(2): 858-873.
[14]   SHAVER G R. Mineral nutrition and leaf longevity in ledum palustre the role of individual nutrients and the timing of leaf mortality. Oecologia, 1983, 56(2): 160-165.
[15]   Dwyer L M, Andrews C J, Stewart D W, MA B L, DUGAS J A. Carbohydrate levels in field-grown leafy and normal maize genotypes. Crop Science, 1995, 35(4): 1020-1027.
[16]   Andrews C J, Dwyer L M, Stewart D W, DUGS J A, BONN P, DEYER L M. Distribution of carbohydrate during grainfill in leafy and normal maize hybrids. Canadian Journal of Plant Science, 2000, 80(1): 87-95.  
[17]   Stewart D W, Dwyer L M. Mathematical characterization of maize canopies. Agricultural & Forest Meteorology, 1993, 66(3): 247-265.
[18]   Modarres A M, Hamilton R I, Dwyer L M, STEWART D W, DIJAK M, SMITH D L. Leafy reduced-stature maize for short-season environments: yield and yield components of inbred lines. Euphytica, 1997, 97(2): 129-138.
[19]   Begna S H, Hamilton R I, Dwyer L M, STEWART D W, SMITH D L. Effects of population density on the yield and yield components of leafy reduced-stature maize in short-season areas. Journal of Agronomy & Crop Science, 2010, 178(2): 103-110.   
[20]   DIJAK M, MODARRES A M, HAMILTON R I, DWYER L M, STEWART D W, MATHER D E, SMITH D L. Leafy reduced-stature maize hybrids for short-season environments. Crop Science, 1999, 39(39): 1106-1110.
[21]   曹靖生. 几个玉米株型性状的遗传规律研究. 黑龙江农业科学, 1995(3): 16-19.
CAO J S. Genetic studies on some plant type traits in maize. Heilongjiang Agricultural Science, 1995(3): 16-19. (in Chinese)
[22]   CORETEAM R. R: a language and environment for statistical computing. Computing,2015, 14: 12-21.
[23]   LI M X, YEUNG J M, CHERNY S S, SHAM P C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Human Genetics, 2012, 131(5): 747-756.
[24]   LI H, PENG Z, YANG X, WANG W, FU J, WANG J H, HAN Y G, CHAI Y C, GUO T T, YANG N, LIU J, WARBURTON M L, CHENG Y B, HAO X M, ZHANG P, ZHAO J Y, LIU Y J, WANG G Y, LI J S, YAN J B. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43-50.
[25]   Feng Y, Zheng Q, Song H, WANG Y, WANG A, JIANG L, YAN J, ZHENG Y, YUE B. Multiple loci not only Rf3 involved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize. Theoretical and Applied Genetics, 2015, 128(11): 2341-2350.
[26]   Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 2011, 28: 511-526
[27]   陈荣江, 刘永录. 玉米若干农艺性状的遗传相关分析. 河南科技学院学报(自然科学版), 1997(2): 19-24. 
CHEN R J, LIU Y L. Genetic relation analysis of agronomic characters maize. Journal of Henan Institute of Science and Technology (Natural science Edition), 1997(2): 19-24. (in Chinese)
[28]   Xiao Y, Tong H, Yang X, XU S, PAN Q, QIAO F, RAIHAN M S, LUO Y, LIU H, ZHANG X, YANG N, WANG X, DENG M, JIN M, ZHAO L, LUO X, ZHOU Y, LI X, LIU J, ZHAN W, LIU N, WANG H, CHEN G, CAI Y, XU G, WANG W, ZHANG D, YAN J. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2015, 210(3): 1095-1106. 
[29]   郑克志, 李元, 瞿会, 闫伟, 张旷野, 宋茂兴, 吕香玲, 李凤海, 史振声. 玉米株高和穗位高的QTL定位. 江苏农业科学, 2015, 43(5): 61-63.  
ZHENG K Z, LI Y, QU H, YAN W, ZHANG K Y, SONG M X, Lü X L, LI F H, SHI Z S. QTL mapping of plant height and ear height in maize. Jiangsu Agricultural Sciences, 2015, 43(5): 61-63. (in Chinese)
[30]   SAMAYOA L F, MALVAR R A, OLUKOLU B A, HOLLAND J B, BUTRON A. Genome-wide association study reveals a set of genes associated with resistance to the mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC plant biology, 2015, 15: 35.
[1] 王继英, 王海霞, 迟瑞宾, 郭建凤, 武英. 全基因组关联分析在畜禽中的研究进展[J]. 中国农业科学, 2013, 46(4): 819-829.
[2] 刘传光,张桂权,周汉钦,冯道基,郑海波. 华南地区常规籼稻品种产量和株型性状的遗传改良[J]. 中国农业科学, 2010, 43(19): 3901-3911 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!