中国农业科学 ›› 2015, Vol. 48 ›› Issue (20): 4077-4085.doi: 10.3864/j.issn.0578-1752.2015.20.009

• 植物保护 • 上一篇    下一篇

抗性稗草1-氨基环丙烷-1-羧酸氧化酶基因的克隆与表达分析

 董明超1,2,杨霞2,张自常2,李永丰2,管荣展1
  

  1. 1南京农业大学农学院,南京 210095
    2江苏省农业科学院植物保护研究所,南京 210014
  • 收稿日期:2015-04-20 出版日期:2015-10-20 发布日期:2015-10-20
  • 通讯作者: 管荣展,E-mail:guanrzh@njau.edu.cn。李永丰,E-mail:liyongfeng_2010@163.com E-mail:guanrzh@njau.edu.cn; liyongfeng_2010@163.com
  • 作者简介:董明超,Tel:15093338059;E-mail:dongmcjiayou@163.com
  • 基金资助:
    国家自然科学基金(31371953)、国家公益性行业(农业)科研专项(201303031)、江苏省农业科技自主创新资金(SCX(13)3063)

Identification and Expression Analysis of 1-Aminocyclopropane- 1-Carboxylate Oxidase Gene from Quinclorac-Resistant Barnyardgrass (Echinochloa crus-galli)

DONG Ming-chao1,2, YANG Xia2, ZHANG Zi-chang2, LI Yong-feng2, GUAN Rong-zhan1   

  1. 1College of Agriculture, Nanjing Agricultural University, Nanjing 210095
    2Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2015-04-20 Online:2015-10-20 Published:2015-10-20

摘要: 【目的】克隆稗草(Echinochloa crus-galli)乙烯生物合成途径关键酶1-氨基环丙烷-1-羧酸氧化酶基因(EcACO),对其进行表达分析和酶活性测定,以探究稗草抗二氯喹啉酸的机理。【方法】根据转录组测序所得EcACO部分序列设计引物,分别从二氯喹啉酸的抗性和敏感型稗草中克隆EcACO的全长序列,用DNAman以及GeneDOC等软件进行序列分析。用qRT-PCR方法分析抗性和敏感性稗草间的EcACO表达水平差异。最后分别将抗性和敏感性稗草EcACO的开放阅读框(ORF)序列连接至原核表达载体pMAL-c5x中,并转化至大肠杆菌菌株BL21,经终浓度为0.4 mmol·L-1的IPTG于18℃诱导16 h后,检测EcACO蛋白的表达情况。采用MBP吸附柱分离纯化EcACO蛋白后,通过测定乙烯释放量,测定抗性和敏感稗草EcACO蛋白间的活性差异。【结果】克隆得到抗性稗草和敏感稗草EcACO,其编码区序列长度为936 bp,预测蛋白含311个氨基酸残基,蛋白分子量大小和理论等电点分别为35 kD和5.4。序列比对表明,抗性稗草EcACO氨基酸序列与粟(Setaria italica)、玉米(Zea mays)、高粱(Sorghum bicolor)同源性分别为93%、92%和91%;与敏感性稗草EcACO相比,抗性稗草EcACO的氨基酸序列存在5个突变位点,其中有3个突变位点位于保守功能域上。qPCR分析显示,EcACO在抗性和敏感性稗草中并无明显的表达水平差异。原核蛋白表达和酶活性测定结果表明,敏感型稗草MBP::EcACO融合蛋白单位时间内产生的乙烯释放量是抗性稗草MBP::EcACO融合蛋白的2.15倍,因而该基因可能解释了稗草的抗药性机理。【结论】从抗二氯喹啉酸的稗草中克隆了EcACO,发现了与抗性相关的5个氨基酸突变位点,其中的3个位点突变位于保守结构域,这可能是引起乙烯释放速率降低以及稗草产生二氯喹啉酸抗性的原因。

关键词: 稗草, 1-氨基环丙烷-1-羧酸氧化酶, 基因克隆, 点突变, 表达

Abstract: 【Objective】The objective of this study is to clone barnyardgrass (Echinochloa crus-galli) 1-aminocyclopropane-1- carboxylate oxidase gene (EcACO), analyze its expression and test its enzyme activity, and to unravel the quinclorac-resistant mechanism of E. crus-galli to quinclorac.【Method】The partial sequence of EcACO obtained from E. crus-galli transcriptome pyrosequencing was used to design primers for cloning EcACO from quinclorac-resistant and susceptible E. crus-galli. EcACO was then cloned and sequenced. The nucleotide and putative amino acid sequence analysis were compared using DNAman and GenDoc softwares. The transcript levels of EcACO between resistant and susceptible biotype E. crus-galli were determined by real-time quantitative PCR (qRT-PCR) with β-actin gene as the reference. Finally, the open reading frame (ORF) sequences of EcACO from resistant and susceptible biotypes E. crus-galli were inserted into the expression vector pMAL-c5x, respectively. After the recombinant plasmids were transformed into Escherichia coli strain BL21, the fusion proteins were expressed by the induction with 0.4 mmol·L-1 IPTG for 16 h at 18℃. The soluble proteins were purified with MBP column for the measurement of ethylene released from MBP::EcACO fusion protein. 【Result】EcACO was isolated from E. crus-galli with quinclorac-resistant and susceptible biotypes of E. crus-galli. The ORF of EcACO was 936 bp, encoding 311 amino acids, with pI 5.4 and Mw 35 kD. The deduced amino acid sequences shared high identity with other ACO sequences from Setaria italica (93%), Zea mays (92%) and Sorghum bicolor (91%). Compared with EcACO from the susceptible biotype, five site mutations of EcACO were found in the resistant biotype, of which three site mutations were located in the putative conserved domain. Furthermore, qRT-PCR results showed that there was no significant difference in expression level of EcACO between resistant and susceptible biotype. Using the prokaryotic expression system and the measurement of MBP::EcACO activity, the released amount of ethylene in the MBP::EcACO from susceptible biotype was 2.15 folds higher than that from resistant biotype.【Conclusion】EcACO was identified from quinclorac-resistant and susceptible E. crus-galli. Compared with the susceptible biotype, the EcACO from the resistant one had five amino acid mutations, of which three site mutations were in the conserved domain. This might probably contribute to the reduction of released amount of ethylene and result in quinclorac resistance of E. crus-galli.

Key words: Echinochloa crus-galli, 1-aminocyclopropane-1-carboxylate oxidase, gene cloning, site mutation, expression

[1]    Yang X, Yu X Y, Li Y F. De novo assembly and characterization of the barnyardgrass (Echinochloa crus-galli) transcriptome using next-generation pyrosequencing. PloS One, 2013, 8(7): e69168.

[2]    Powles S B, Yu Q. Evolution in action: plants resistant to herbicides. Annual Review of Plant Biology, 2010, 61: 317-347.
[3]    张朝贤, 倪汉文, 魏守辉, 黄红娟, 刘延, 崔海兰, 隋标峰, 张猛, 郭峰. 杂草抗药性研究进展. 中国农业科学, 2009, 42(4): 1274-1289.
Zhang C X, Ni H W, Wei S H, Huang H J, Liu Y, Cui H L, Sui B F, Zhang M, Guo F. Current advances in research on herbicide resistance. Scientia Agricultura Sinica, 2009, 42(4): 1274-1289. (in Chinese)
[4]    马国兰. 稗草 (Echinochloa crusgalli (L.)Beauv.) 对二氯喹啉酸的抗药性研究[D]. 长沙: 湖南农业大学, 2013.
Ma G L. The resistance of baryardgrass (Echinochloa crusgalli (L.)Beauv.) to quinclorac[D]. Changsha: Hunan Agricultural University, 2013. (in Chinese)
[5]    Yasuor H, Milan M, Eckert J W, Fischer A J. Quinclorac resistance: a concerted hormonal and enzymatic effort in Echinochloa phyllopogon. Pest Management Science, 2012, 68(1): 108-115.
[6]    Lopez M N, Salva A P, Finch R P, Prado R D. Molecular markers indicate intraspecific variation in the control of Echinochloa spp. with quinclorac. Weed Science, 1999, 47(3): 310-315.
[7]    Koo S J, Neal J C, DiTomaso J M. Mechanism of action and selectivity of quinclorac in grass roots. Pesticide Biochemistry and Physiology, 1997, 57(1): 44-53.
[8]    Hansen H, Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiology, 2000, 124(3): 1437-1448.
[9]    Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 1984, 35(1): 155-189.
[10]   Yu Y B, Adams D O, Yang S F. Regulation of auxin-induced ethylene production in mung bean hypocotyls role of 1-aminocyclopropane-1- carboxylic acid. Plant Physiology, 1979, 63(3): 589-590.
[11]   王自章, 李杨瑞, 张树珍, 林俊芳, 郭丽琼. 甘蔗ACC氧化酶基因片段的克隆与序列分析. 遗传学报, 2003, 30(1): 62-69.
Wang Z Z, Li Y R, Zhang S Z, Lin J F, Guo L Q. Cloning and sequencing of ACC oxidase gene from sugarcane. Acta Genetica Sinica, 2003, 30(1): 62-69. (in Chinese)
[12]   Slater A, Maunders M J, Edwards K, Schuch W, Grierson D. Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Molecular Biology, 1985, 5(3): 137-147.
[13]   Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature, 1990, 346: 284-287.
[14]   Xu J Y, Lü B, Wang Q, Li J, Dong L Y. A resistance mechanism dependent upon the inhibition of ethylene biosynthesis. Pest Management Science, 2013, 69(12): 1407-1414.
[15]   Kosugi Y, Matsuoka A, Higashi A, Toyohara N, Satoh S. 2- Aminooxyisobutyric acid inhibits the in vitro activities of both 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase in ethylene biosynthetic pathway and prolongs vase life of cut carnation flowers. Journal of Plant Biology, 2014, 57(4): 218-224.
[16]   Heap I. International survey of herbicide resistant weeds. http://www. weedscience.org. Apr 15th, 2015.
[17]   Hagel J M, Facchini P J. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nature Chemical Biology, 2010, 6(4): 273-275.
[18]   Aravind L, Koonin E V. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biology, 2001, 2(3): research 0007.1-0007.8.
[19]   Abdallah I, Fischer A J, Elmore C L, Saltveit M E, Zaki M. Mechanism of resistance to quinclorac in smooth crabgrass (Digitaria ischaemum). Pesticide Biochemistry and Physiology, 2006, 84(1): 38-48.
[20]   Grossmann K. Auxin herbicides: current status of mechanism and mode of action. Pest Management Science, 2010, 66(2): 113-120.
[21]   Grossmann K, Scheltrup F. Selective induction of 1-aminocyclopropane- 1-carboxylic acid (ACC) synthase activity is involved in the selectivity of the auxin herbicide quinclorac between barnyard grass and rice. Pesticide Biochemistry and Physiology, 1997, 58(2): 145-153.
[1] 温立柱,孙霞,樊红梅,郭芸珲,于媛媛,任红,王文莉,郑成淑. 菊花AINTEGUMENTA克隆与功能分析[J]. 中国农业科学, 2018, 51(9): 1771-1782.
[2] 许月园,齐晓龙,侯晔,赵云霞,栾宇,周焕焕,赵书红,李新云. 蓝塘猪和长白猪骨骼肌差异表达cis-NATs基因鉴定[J]. 中国农业科学, 2018, 51(9): 1795-1805.
[3] 许冰霞,尹美强,温银元,裴帅帅,柯贞进,张彬,原向阳. 谷子萌发期响应干旱胁迫的基因表达谱分析[J]. 中国农业科学, 2018, 51(8): 1431-1447.
[4] 赵洁,任苏伟,刘宁,艾新宇,马纪,刘小宁. 棉铃虫磷脂酰乙醇胺结合蛋白的克隆及表达分析[J]. 中国农业科学, 2018, 51(8): 1493-1503.
[5] 刘超,王玲利,吴頔,党江波,尚维,郭启高,梁国鲁. 枇杷叶片发育基因EjGRF5与启动子克隆及其在不同倍性枇杷中的表达[J]. 中国农业科学, 2018, 51(8): 1598-1606.
[6] 刘小强,蒋红波,李慧敏,熊英,王进军. 赤拟谷盗章鱼胺受体3(TcOctβR3)cDNA克隆、表达及功能[J]. 中国农业科学, 2018, 51(7): 1315-1324.
[7] 张奎,潘光照,苏晶晶,谈娟,徐曼,李钰添,崔红娟. 家蚕glial cell missing (BmGcm)基因鉴定、表达、亚细胞定位和功能[J]. 中国农业科学, 2018, 51(7): 1401-1411.
[8] 阎依超,万春雁,古咸彬,郭成宝,陈月红,高志红. 过量表达RdreB1BI对草莓果实品质及相关基因的影响[J]. 中国农业科学, 2018, 51(7): 1353-1367.
[9] 王丹丹,唐雨婷,马月辉,王立刚,潘登科,蒋琳. 用ZBED6基因敲除猪研究心脏发育的分子机制[J]. 中国农业科学, 2018, 51(7): 1390-1400.
[10] 李睿,安建平,由春香,王小非,郝玉金. 苹果紫色酸性磷酸酶相关基因MdPAP10的克隆及功能鉴定[J]. 中国农业科学, 2018, 51(6): 1182-1191.
[11] 陈东凯,张林雅,邢振龙,雷仲仁. 美洲斑潜蝇气味结合蛋白OBP13的鉴定与功能[J]. 中国农业科学, 2018, 51(5): 893-904.
[12] 田志涛,赵永国,Lenka Havlickova,He Zhesi,Andrea L Harper,Ian Bancroft,邹锡玲,张学昆,陆光远. 甘蓝型油菜种子和角果皮中硫苷含量的动态变化及转录组关联分析[J]. 中国农业科学, 2018, 51(4): 635-651.
[13] 植爽,任艳红,唐星,徐凤翔,王传宏,赵爱春,王茜龄. 桑树谷氨酸脱氢酶基因MaGDHs的克隆及表达分析[J]. 中国农业科学, 2018, 51(4): 758-769.
[14] 胡杰,王鑫怡,王菲. 家蚕BmCaspase-8-Like(BmCasp8L)的免疫负调控功能[J]. 中国农业科学, 2018, 51(21): 4188-4196.
[15] 何红红,马宗桓,张元霞,张娟,卢世雄,张志强,赵鑫,吴玉霞,毛娟. 葡萄LBD基因家族的鉴定与表达分析[J]. 中国农业科学, 2018, 51(21): 4102-4118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!