中国农业科学 ›› 2015, Vol. 48 ›› Issue (12): 2354-2363.doi: 10.3864/j.issn.0578-1752.2015.12.008

• 植物保护 • 上一篇    下一篇

利用酵母双杂交系统筛选介体异沙叶蝉中与小麦矮缩病毒外壳蛋白互作的蛋白质

赵艺泽,刘艳,王锡锋   

  1. 中国农业科学院植物保护研究所植物病虫害生物学国家重点实验室,北京 100193
  • 收稿日期:2014-12-12 出版日期:2015-06-16 发布日期:2015-06-16
  • 通讯作者: 王锡锋,Tel:010-62815928;E-mail:wangxifeng@caas.cn E-mail:wangxifeng@caas.cn
  • 作者简介:赵艺泽,E-mail:zhaoyize0808@163.com
  • 基金资助:
    国家自然科学基金(31272017)、国家公益性行业(农业)科研专项(201303021)

Screening of Putative Proteins in Vector Psammotettix alienus L. that are Interacted with Coat Protein of Wheat dwarf virus by a Split-ubiquitin Yeast Membrane System

ZHAO Yi-ze, LIU Yan, WANG Xi-feng   

  1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2014-12-12 Online:2015-06-16 Published:2015-06-16

摘要: 【目的】利用分离泛素酵母双杂交膜系统(split-ubiquitin yeast membrane system),以小麦矮缩病毒Wheat dwarf virus,WDV)的外壳蛋白(CP)基因为诱饵对异沙叶蝉(Psammotettix alienus L.)cDNA文库进行筛选,研究异沙叶蝉传播WDV的分子机制。【方法】以笔者实验室饲养的异沙叶蝉为材料,提取其总RNA后取100 ng进行纯化,利用SMART法反转录合成ds cDNA,经过Sfi I酶切纯化,连接到pPR3-N文库载体上,构建得到以pPR3-N为载体的异沙叶蝉分离泛素酵母双杂交膜系统cDNA文库。同时,构建带有Sfi I酶切位点的诱饵载体pDHB1-WDV CP,经功能检测后用诱饵载体初步筛选pPR3-N空文库,寻找适合筛库的条件和确定His基因产物抑制剂3-氨基-1,2,4-三唑(3-AT)的使用浓度。然后用诱饵载体筛选异沙叶蝉cDNA文库,对筛选结果进行分析,再通过共转验证和β-半乳糖苷酶检测进一步验证是否发生互作。利用Uniprot和KEGG在线网站,对筛到的蛋白进行gene ontology(GO)注释和Pathway分析。【结果】初级文库库容量超过2.0×106 cfu,文库实际扩增数量大于1.3×106 cfu,文库重组率大于97%,扩增文库插入片段平均长度大于1 000 bp,表明异沙叶蝉cDNA文库的质量较高。酶切验证显示诱饵载体pDHB1-WDV-CP中CP的插入完整而准确。功能检测表明融合蛋白能够正确表达。3-AT浓度为5 mmol?L-1的筛选条件下,诱饵载体筛选异沙叶蝉cDNA文库得到280个克隆,经测序和Blast比对分析最终得到12个可能与WDV的CP发生互作的异沙叶蝉蛋白质。将这12个蛋白质再次进行共转验证和β-半乳糖苷酶检测,最终得到9个蛋白质与WDV CP互作。GO注释显示,9个蛋白参与的生物过程包括蛋白去磷酸化、碳水化合物代谢过程、先天性免疫应答、模式识别受体的信号通路、运输、同向运输和乙醇氧化等;分子功能包括金属离子结合活性、蛋白磷酸酶活性、信号模式识别受体的活性、水解酶活性、磷酸离子载体活性和叶酸运输活性等。参考KEGG数据库,这些蛋白参与的代谢途径有泛素介导的蛋白水解途径、内吞作用、花生四烯酸代谢途径、cAMP信号通路和模式识别受体的信号通路等。【结论】异沙叶蝉分离泛素酵母双杂交膜系统cDNA文库的成功构建与筛选,为研究异沙叶蝉与小麦矮缩病毒的互作机制研究奠定了基础。

关键词: 异沙叶蝉, 小麦矮缩病毒, SMART技术, cDNA文库, 分离泛素酵母双杂膜系统

Abstract: 【Objective】To investigate the interaction between the leafhopper (Psammotettix alienus L.) and Wheat dwarf virus (WDV), a cDNA library of leafhopper was constructed using a split-ubiquitin yeast membrane system. The protein interaction analysis was done by using WDV CP as bait protein to screen a cDNA library of P. alienus. 【Method】Total RNA of leafhopper was isolated from 2 g of insects. Poly A+ RNA was enriched from 100 ng of total RNA and double-stranded cDNA was synthesized using SMART technology. After digestion with the Sfi I enzyme, the fragmented cDNA was ligated to prey vector pPR3-N, and then also digested with Sfi I enzyme to construct the split-ubiquitin yeast membrane system cDNA library. The full-length gene, WDV CP, amplified from wheat leaves infected by WDV was ligated into bait fusion vector, pDHB1. After functional assay, pDHB1-WDV CP vector was co-transformed into NMY51 with empty library vector in order to get an optional concentration of 3-AT. Then using the split-ubiquitin yeast membrane system, proteins interact with the bait pDHB1-WDV CP were screened from the cDNA library of P.alienus. Gene ontology (GO) and pathway information of proteins were analyzed from Uniprot and KEGG websites.【Result】Detection of the cDNA library showed that the unamplified library contained 2.0×106 independent clones, the titer of the amplified library was 1.3×106 cfu. The recombination rate was above 97%. The sizes of most inserts were above 1 kb in the cDNA library. The correct ligated fusion bait vector pDHB1-WDV CP was verified by restriction enzyme digestion analysis and sequencing. Functional assay showed that the fusion protein was functionally correctly expressed in the yeast and suited to this system. In library screen test, 280 clones were got from the cDNA library of P. alienus. Twelve proteins were selected for further research based on the functional analysis in terms of GO. Finally, 9 proteins confirmed by β-galactosidase assay were interacted with WDV CP. GO annotation analysis showed 9 putative proteins were involved in 10 biological processes including protein dephosphorylation, carbohydrate metabolic process, transport, etc. Molecular functions included metal ion binding, phosphate ion carrier activity, folic acid transporter activity, protein complex binding, etc. These proteins also were involved in ubiquitin mediated proteolysis, endocytosis, arachidonic acid metabolism, cAMP signaling pathway, PPAR signaling pathway.【Conclusion】A high-quality cDNA library was constructed and 9 proteins were interacted with WDV CP, which could be used for insect vector and WDV interaction analysis.

Key words: leafhopper (Psammotettix alienus L.), Wheat dwarf virus (WDV), SMART technology, cDNA library, split- ubiquitin yeast membrane system

[1]    Hogenhout S A, Ammar E D, Whitfield A E, Redinbaugh M G. Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology,2008, 46: 327-359.
[2]    Liu Y, Jin W, Wang L, Wang X. Replication-associated proteins encoded by Wheat dwarf virus act as RNA silencing suppressors. Virus Research, 2014, 190: 34-39.
[3]    Liu Y, Wang B, Vida G, Karolyi-Cseplo M, Wu B, Wu Y, Wang X. Genomic analysis of the natural population of Wheat dwarf virus in wheat from China and Hungary. Journal of Integrative Agriculture, 2012, 11(12): 2020-2027.
[4]    Vacke J. Wheat dwarf virus disease. Biologia Plantarum, 1961, 3(3): 228-233.
[5]    Xie J, Wang X, Liu Y, Peng Y, Zhou G. First report of the occurrence of Wheat dwarf virus in wheat in China. Plant Disease, 2007, 91(1): 111.
[6]    王江飞, 柳树宾, 吴蓓蕾, 谢家建, 王锡锋. 陕西韩城严重发生的小麦矮缩病病原鉴定与原因分析. 植物保护, 2008, 34(2): 17-21.
Wang J F, Liu S B, Wu B L, Xie J J, Wang X F. Identification and analyses of the pathogen causing the Wheat dwarf virus in Hancheng of Shaanxi Province, China. Plant Protection, 2008, 34(2): 17-21. (in Chinese)
[7]    Hohn T. Plant virus transmission from the insect point of view. Proceeding of the National Academy Sciences of the United States of America, 2007, 104(46): 17905-17906.
[8]    贾东升, 马元元, 杜雪, 陈红燕, 谢联辉, 魏太云. 水稻黑条矮缩病毒在灰飞虱消化系统的侵染和扩散过程. 植物病理学报, 2014, 44(2): 188-194.
Jia D S, Ma Y Y, Du X, Chen H Y, Xie L H, Wei T Y. Infection and spread of Rice black streaked dwarf virus in the digestive system of its insect vector small brown planthopper. Acta Phytopathologica Sinica, 2014, 44(2): 188-194. (in Chinese)
[9]    魏太云, 林含新, 谢联辉. 酵母双杂交系统在植物病毒学上的应用. 福建农业大学学报: 自然科学版, 2003, 32(1): 50-54.
Wei T Y, Lin H X, Xie L H. Application of yeast two-hybrid system to plant virology. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2003, 32(1): 50-54. (in Chinese)
[10]   Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340(6230): 245-246.
[11]   Wang Y, Mao Q, Liu W, Mar T, Wei T, Liu Y, Wang X. Localization and distribution of Wheat dwarf virus in its vector leafhopper, Psammotettix alienus. Phytopathology, 2014, 104(8): 897-904.
[12]   王亚娇, 任堂雨, 刘艳, 王锡锋. 小麦矮缩病毒外壳蛋白基因的原核表达、抗体制备及应用. 植物病理学报, 2013, 43(4): 362-367.
Wang Y J, Ren T Y, Liu Y, Wang X F. Antiserum preparation of Wheat dwarf virus using coat protein expressed in Escherichia coli and its application. Acta Phytopathologica Sinica,2013, 43(4): 362-367. (in Chinese)
[13]   Visser P B, Bol J F. Nonstructural proteins of Tobacco rattle virus which have a role in nematode-transmission: expression pattern and interaction with viral coat protein. Journal of General Virology, 1999, 80: 3273-3280.
[14]   Huo Y, Liu W, Zhang F, Chen X, Li L, Liu Q, Zhou Y, Wei T, Fang R, Wang X. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLoS Pathogens, 2014, 10(3): e1003949.
[15]   秦发亮, 刘文文, 李莉, 王锡锋. 利用酵母双杂交技术筛选介体灰飞虱中与水稻条纹病毒病害特异蛋白互作的蛋白质. 中国农业科学, 2014, 47(14): 2784-2794.
Qin F L, Liu W W, Li L, Wang X F. Screening of putative proteins in vector Laodelphax striatellus which are interacted with disease- specific protein of Rice stripe virus by yeast two-hybrid based on the split-ubiquitin. Scientia Agricultura Sinica, 2014, 47(14): 2784-2794. (in Chinese)
[16]   Mar T, Liu W, Wang X. Proteomic analysis of interaction between P7-1 of Southern rice black-streaked dwarf virus and the insect vector reveals diverse insect proteins involved in successful transmission. Journal of Proteomics, 2014, 102: 83-97.
[17]   Gietz R D, Woods R A. Yeast transformation by the LiAc/SS carrier DNA/PEG method//Method in Molecular Biology, Vol 313: Yeast Protocols: 2nd ed. Humana Press Inc., 2006: 107-120.
[18]   Stagljar I, Korostensky C, Johnsson N, te Heesen S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proceeding of the National Academy Sciences of the United States of America, 1998, 95(9): 5187-5192.
[19]   Dirnberger D, Messerschmid M, Baumeister R. An optimized split- ubiquitin cDNA-library screening system to identify novel interactors of the human Frizzled 1 receptor. Nucleic Acids Research, 2008, 36(6): e37.
[20]   Mockli N, Deplazes A, Hassa P O, Zhang Z, Peter M, Hottiger M O, Stagljar I, Auerbach D. Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. BioTechniques, 2007, 42(6): 725-730.
[21]   Said H M, Nguyen T T, Dyer D L, Cowan K H, Rubin S A. Intestinal folate transport: identification of a cDNA involved in folate transport and the functional expression and distribution of its mRNA. Biochimica et Biophysica Acta, 1996, 1281(2): 164-172.
[22]   Le Roy C, Wrana J L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nature Reviews Molecular Cell Biology,2005, 6(2): 112-126.
[23]   Donaldson J G, Porat-Shliom N, Cohen L A. Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell Signaling, 2009, 21(1): 1-6.
[24]   Sabharanjak S, Mayor S. Folate receptor endocytosis and trafficking. Advanced Drug Delivery Reviews, 2004, 56(8): 1099-1109.
[25]   Zhao R, Min S, Wang Y, Campanella E, Low P S, Goldman I D. A role for the proton-coupled folate transporter (PCFT-SLC46A1) in folate receptor-mediated endocytosis. The Journal of Biological Chemistry, 2009, 284(7): 4267-4274.
[26]   Schlesinger D H, Goldstein G. Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature, 1975, 255(5507): 423-424.
[27]   Wang Y, Tang C, Wang E, Wang J. PolyUbiquitin chain linkage topology selects the functions from the underlying binding landscape. PLoS Computational Biology, 2014, 10(7): e1003691.
[28]   Lozano-Durán R, Rosas-Díaz T, Gusmaroli G, Luna A P, Taconnat L, Deng X, Bejarano E R. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. The Plant Cell, 2011, 23(3): 1014-1032.
[29]   Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annual Review of Biochemistry, 2012, 81: 291-322.
[30]   Shih S C, Sloper-Mould K E, Hicke L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. The EMBO Journal, 2000, 19(2): 187-198.
[31]   Schwarz L A, Patrick G N. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins. Molecular and Cellular Neuroscience, 2012, 49(3): 387-393.
[32]   Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annual Review of Cell and Developmental Biology, 2003, 19: 141-172.
[33]   Weissman A M. Themes and variations on ubiquitylation. Nature Reviews Molecular Cell Biology, 2001, 2(3): 169-178.
[34]   Galan J M, Haguenauer-Tsapis R. Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. The EMBO Journal, 1997, 16(19): 5847-5854.
[35]   Mayr J A, Merkel O, Kohlwein S D, Gebhardt B R, Bohles H. Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation. The American Journal of Human Genetics, 2007, 80(3): 478-484.
[36]   Bliss T V, Douglas R M, Errington M L, Lynch M A. Correlation between long-term cotentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. The Journal of Physiology, 1986, 377: 391-408.
[37]   Jorgensen N K, Petersen S F, Hoffmann E K. Thrombin-, bradykinin-, and arachidonic acid-induced Ca2+ signaling in Ehrlich ascites tumor cells.American Journal of Physiology-Cell Physiology,1999, 276(Pt 1): C26-37.
[38]   Reid A J, Vermont S J, Cotton J A, Harris D, Hill-Cawthorne G A. Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: Coccidia differing in host range and transmission strategy. PLoS Pathogens, 2012, 8(3): e1002567.
[39]   Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450(7167): 203-218.
[40]   Kim Y S, Ryu J H, Han S J, Choi K H, Nam K B, Jang I H, Lemaitre B, Brey P T, Lee W J. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and β-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. The Journal of Biological Chemistry, 2000, 275(42): 32721-32727.
[41]   Jiggins F M, Kim K W. Contrasting evolutionary patterns in Drosophila immune receptors. Journal of Molecular Evolution, 2006, 63(6): 769-780.
[42]   Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D. The genome sequence of Drosophila melanogaster. Science, 2000, 287(5461): 2185-2195.
[43]   Anatriello E, Ribeiro J M, de Miranda-Santos I K, Brandão L G, Anderson J M, Valenzuela J G, Maruyama S R, Silva J S, Ferreira B R. An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus. BMC Genomics, 2010, 11(1): 450.
[44]   Colbourne J K, Pfrender M E, Gilbert D, Thomas W K, Tucker A. The ecoresponsive genome of Daphnia pulex. Science, 2011, 331(6017): 555-561.
[1] 李帅,蒋西子,梁伟芳,陈思涵,张享享,左登攀,胡亚会,江彤 . 利用酵母双杂交系统筛选与草莓镶脉病毒P6蛋白互作的森林草莓寄主因子[J]. 中国农业科学, 2017, 50(18): 3519-3528.
[2] 吴慧娟,刘艳,王锡锋. 小麦矮缩病毒引起的植株矮化与赤霉素代谢的相关性分析[J]. 中国农业科学, 2017, 50(17): 3337-3343.
[3] 迟吉娜,蔡肖,张建宏,甄军波,刘琳琳,田海燕,唐丽媛,刘存敬,崔瑞敏,张香云. 冀228纤维均一化全长cDNA文库的构建与鉴定分析[J]. 中国农业科学, 2016, 49(5): 813-824.
[4] 王宇秋,李国邦,杨娟,黎良,赵志学,樊晶,王文明. 稻曲病菌侵染水稻颖花的酵母双杂交cDNA文库构建与应用[J]. 中国农业科学, 2016, 49(5): 865-873.
[5] 罗维玉,朱鹏阳,张 杰,胡永浩,孔晖晖,梁立滨,周 圆,李呈军,姜 丽,陈化兰. 人源肺细胞cDNA文库构建及与流感病毒NP互作宿主蛋白的筛选[J]. 中国农业科学, 2016, 49(22): 4451-4459.
[6] 秦发亮, 刘文文, 李莉, 王锡锋. 利用酵母双杂交技术筛选介体灰飞虱中与水稻条纹病毒病害特异蛋白互作的蛋白质[J]. 中国农业科学, 2014, 47(14): 2784-2794.
[7] 陈华1, 2, 邓烨1, 2, 张冲1, 蔡铁城1, 2, 郑奕雄1, 2, 3, 庄伟建1, 2. 不同发育时期花生胚混合全长cDNA文库的构建与分析[J]. 中国农业科学, 2014, 47(11): 2272-2280.
[8] 马建辉., 刘记., 范术丽, 宋美珍, 庞朝友, 魏恒玲, 喻树迅. 棉花花药全生育期均一化全长cDNA文库的构建和分析[J]. 中国农业科学, 2013, 46(18): 3743-3749.
[9] 龚达平, 解敏敏, 孙玉合. 烟草叶片全长cDNA文库构建及EST序列分析[J]. 中国农业科学, 2012, 45(9): 1696-1702.
[10] 谢正露, 沈学怀, 刘琳, 殷复建, 马海田, 范红结. C57BL/6和A/J两品系小鼠脾脏消减cDNA文库的构建及差异基因分析[J]. 中国农业科学, 2012, 45(7): 1406-1417.
[11] 唐超西, 龚明波, 李顺鹏, 朱昌雄. 草酸青霉菌I1的cDNA文库构建及其溶磷相关基因的筛选[J]. 中国农业科学, 2012, 45(18): 3792-3800.
[12] . 枯萎病菌诱导香蕉根的均一化全长cDNA文库构建及防御基因的表达模式分析
[J]. 中国农业科学, 2011, 44(6): 1092-1099 .
[13] 曾日中,段翠芳,聂智毅,代龙军,黎瑜 . 橡胶树胶乳均一化全长cDNA文库的构建与EST测序分析
[J]. 中国农业科学, 2011, 44(4): 683-690 .
[14] 宁官保,田文霞,王瑞,覃平,乔建钢,李宏全,李家奎,毕丁仁,潘思轶,郭定宗
. 福美双诱发肉鸡胫骨软骨发育不良早期生长板消减cDNA文库的构建
[J]. 中国农业科学, 2011, 44(4): 829-834 .
[15] 李晨,闫晓红,周新安,沙爱华,单志慧,周蓉,魏文辉
. 大豆种子不同发育时期全长均一化cDNA文库的构建
[J]. 中国农业科学, 2010, 43(3): 462-467 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!