中国农业科学 ›› 2015, Vol. 48 ›› Issue (11): 2143-2151.doi: 10.3864/j.issn.0578-1752.2015.11.006

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

葡萄树形态结构与生长发育过程数字化表达方法研究

温维亮,王勇健,李超,王传宇,郭新宇   

  1. Beijing Research Center for Information Technology in Agriculture, Beijing 100097
  • 收稿日期:2014-08-13 出版日期:2015-06-01 发布日期:2015-06-01
  • 通讯作者: 郭新宇,Tel:010-51503422;E-mail:guoxy@nercita.org.cn E-mail:guoxy@nercita.org.cn
  • 作者简介:温维亮,Tel:010-51503362;E-mail:wenwl@nercita.org.cn
  • 基金资助:
    国家科技支撑计划(2012BAD35B01)、国家863计划(2013AA102405)

Research on Digitizing Morphological Structure and Growth Process of Grape Tree

WEN Wei-liang, WANG Yong-jian, LI Chao, WANG Chuan-yu, GUO Xin-yu   

  1. 北京农业信息技术研究中心,北京 100097
  • Received:2014-08-13 Online:2015-06-01 Published:2015-06-01

摘要: 【目的】用数字化方式描述植物形态结构与生长发育过程,是正确认识和表达植物生长发育规律的有效手段。本文旨在对形态结构较为复杂的葡萄树进行精确描述与定量分析,对葡萄树的数字化表达和处理技术进行研发与深化。【方法】针对葡萄树的形态结构特征和生长发育过程,划分并定义葡萄树的基本结构单元,包括葡萄树主干、多年生蔓、新梢和着生于枝蔓上的器官,其中新梢包括果枝和营养枝;着生于枝蔓上的器官包括芽、花序、果穗、副梢、叶片和卷须等。基于对葡萄树结构单元的划分,借鉴国内外结构单元的命名经验、习惯与演变趋势并结合田间观察结果,遵循葡萄树各结构单元出生的时空顺序,系统地提出了以年为单位的葡萄树地上部各结构单元数字化命名方案,以字母表示结构单元的类型,数字表明出生顺序和结构单元编号。命名方案还包含了各结构单元的着生关系和分枝来源等信息,整合了多年生长机制下由新梢到蔓,再到多年生蔓的生长变化过程,并以节间为单位,以有序集的方式描述了新梢的构成。在命名方案基础上,给出了组合器官与复杂操作表示方法,包括(1)基于结构单元命名的葡萄树结果母枝与结果枝组的复杂器官表示方法;(2)人工修剪对葡萄树结构变化的数字化描述;(3)以年为单位的葡萄树动态生长数字化描述;(4)多年生葡萄树生长发育过程回溯;(5)基于葡萄树结构表示的各级结构单元量化统计分析等方法。【结果】以郑州国家葡萄种质资源圃极短梢修剪的V字形‘赤霞珠’葡萄树和北京市农林科学院林业果树研究所试验温室的搭架式T字形‘香妃’葡萄树为例,分别给出两种树形的数字化表达,实现了复杂葡萄树结构的明确表示,包括各器官的唯一性命名、各器官的连接关系等。在结构表示的基础上,进行了新梢结构单元量化统计、副梢及卷须人工修剪、种植年限增加带来的葡萄树结构变化表达等的数字化描述,结果表明方法对不同树形、不同生长时期葡萄树形态结构描述的普适性与有效性。【结论】葡萄树形态结构的数字化表示有助于更加直观地理解葡萄树的形态结构与生长发育方式,对葡萄树功能-结构模型的构建,实现葡萄树形态结构的精确描述、可视化表达、定量分析,以及对葡萄树内部各要素的状态、发展演变过程的定量计算和模拟及进一步的预测和评价具有重要意义。葡萄树结构单元划分与命名方案对相似结构的木本植物研究有一定的借鉴与参考作用。

关键词: 葡萄树, 形态结构, 生长发育, 数字化, 结构单元

Abstract: 【Objective】 Describing the morphology structure and growth process of plants in a digital way is an effective means of correctly understanding and expressing the development regulation of plants. In order to accurately describe and quantitatively analyze the grape trees with complex morphological structure, the digital expression and processing technologies of grape trees were studied in depth. 【Method】 The basic structure unit was divided and defined according to the morphological structure and growth process of grape tree, including the truck, perennial canes, new shoot and organs on the shoots. The new shoots include bearing and vegetative shoots. Organs on the shoots include buds, inflorescence, ears, secondary shoots, leaves and tendrils. Referencing the experience, habits, and trend of structure naming strategy at home and abroad, combining the actual field observation and following the temporal and space order of growth sequences of each structure unit, a naming scheme for the above ground structure units of grape trees at an annual rate was proposed. The first letters indicate the type and the figures showing the birth order of structure unit. The naming scheme also contains information of the growth and branching source relationship between the relative structure units. It integrated the shoot change process from the initial new shoot to the cane and then to the perennial cane under the perennial mechanism. The new shoots were constituted using an ordered set way in the scheme. On the basis of the naming scheme, the representation method of compound organs and complex operations was given, including representation method of complex organs such as bearing basal shoots and bearing shoot group; digital description of grape tree structure changes by artificial pruning; growth representation of grape trees at an annual rate; growth process backtracking of perennial grape trees; quantitative statistical analysis method of each structure unit. 【Result】 Taking the short shoot pruned V font shape Cabernet Sauvignon grape tree in Zhengzhou National Grape Germplasm Resources Garden and T font shape Xiangfei grape tree in the experimental greenhouse in Institute of Forestry and Pomology of Beijing Academy of Agricultural and Forestry Sciences as an example, the digital expression of the selected two trees was given respectively. The digital expression realized a clear representation of the two trees with complex structures, including the unique naming of each organ and the connection relationship of each other. On the basis of the structure expression, structure units on a new shoot were counted to make a quantitative statistic. The morphological structure change expression such as secondary shoot and tendril pruning and tree annual growth were illustrated as well. The application of digitized grape trees showed the universality and effectiveness of the method for the description of different forms and different growth periods of grape trees. 【Conclusion】 This study contributes to a more intuitive understanding of grape tree morphological structure and growth mode. It has important significance for constructing the functional-structural model, for realizing precisely describing morphological structure of grape trees, visualization expression and quantitative analysis, etc. The study also has important significance for quantitative calculating and simulating the condition, development and evolution of the internal factors of grape trees, and for further prediction and evaluation of these factors. At last, the structure unit definition and naming scheme have reference values to research the woody plants of similar morphological structures.

Key words: grape tree, morphological structure, growth and development, digitization, structure unit

[1]    赵春江, 陆声链, 郭新宇, 肖伯祥, 温维亮. 数字植物及其技术体系探讨. 中国农业科学, 2010, 43(10): 2023-2030.
Zhao C J, Lu S L, Guo X Y, Xiao B Y, Wen W L. Exploration of digital plant and its technology system. Scientia Agricultura Sinica, 2010, 43(10): 2023-2030. (in Chinese)
[2]    路甬祥. 数字地球与数字城市. 中国建设信息, 2007(20): 23-25.
Lu Y X. Digital earth and digital city. Information of China Construction, 2007(20): 23-25. (in Chinese)
[3]    钟世镇. 数字人——信息与生命科学结合的新领域. 科技导报, 2005, 23(2): 9-12.
Zhong S Z. Digital human-A new research field combined information and life science. Science & Technology Review, 2005, 23(2): 9-12. (in Chinese)
[4]    顾坚磊, 周雁. 中国基因组生物信息学回顾与展望. 中国科学: C , 2008, 38(10): 882-890.
Gu J L, Zhou Y. Review and prospect of genomics bioinformatics in China. Science in China Series C: Life Sciences, 2008, 38(10): 882-890. (in Chinese)
[5]    曹卫星, 朱艳, 田永超, 姚霞, 刘小军. 数字农作技术研究的若干进展与发展方向. 中国农业科学, 2006, 39(2): 281-288.
Cao W X, Zhu Y, Tian Y C, Yao X, Liu X J. Research progress and prospect of digital farming techniques. Scientia Agricultura Sinica, 2006, 39(2): 281-288. (in Chinese)
[6]    Lindenmayer A. Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. Journal of Theoretical Biology, 1968, 18(3): 280-299.
[7]    Guo Y, Ma Y T, Zhan Z G, Li B G, Dingkuhn M, Luquet D, De Reffye P. Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Annals of Botany, 2006, 97(2): 217-230.
[8]    Hu B, De Reffye P, Zhao X, Yan H P, Kang M Z. Greenlab: a new methodology towards plant functional-structural model-structural part. Plant Growth Modelling and Applications, 2003: 21-35.
[9]    Barczi J, Rey H E, Caraglio Y, De Reffye P, Barth D, Dong Q X, Fourcaud T. AmapSim: a structural whole-plant simulator based on botanical knowledge and designed to host external functional models. Annals of Botany, 2008, 101(8): 1125-1138.
[10]   赵星, De Reffye P, 熊范纶, 胡包钢, 展志岗. 虚拟植物生长的双尺度自动机模型. 计算机学报, 2001(6): 608-615.
Zhao X, De Reffye P, Xiong F L, Hu B G, Zhan Z G. Dual-scale automaton model for virtual plant development. Chinese Journal of Computers, 2001(6): 608-615. (in Chinese)
[11]   Fourcaud T, Zhang X, Stokes A, Lambers H, Rner C. Plant growth modelling and applications: the increasing importance of plant architecture in growth models. Annals of Botany, 2008, 101(8): 1053-1063.
[12]   郭焱, 李保国. 虚拟植物的研究进展. 科学通报, 2001, 46(4): 273-280.
Guo Y, Li B G. Research progress of virtual plants. Chinese Science Bulletin, 2001, 46(4): 273-280. (in Chinese)
[13]   袁琪, 周淑秋. 基于双尺度自动机的玉米拓扑结构模型研究. 齐齐哈尔大学学报: 自然科学版, 2010, 26(1): 5-8.
Yuan Q, Zhou S Q. Study on the topological structure model of corn based on dule-scale automaton. Journal of Qiqihar University: Natural Science Edition, 2010, 26(1): 5-8. (in Chinese)
[14]   曹卫星, 李存东. 小麦器官发育序列化命名方案. 中国农业科学, 1997, 30(5): 67-71.
Cao W X, Li C D. A sequential naming scheme for developmental organs in wheat. Scientia Agricultura Sinica, 1997, 30(5): 67-71. (in Chinese)
[15]   孔庆山. 中国葡萄志. 北京: 中国农业科技出版社, 2004.
Kong Q S. Chi China Grape. Beijing: China Agricultural Science and Technology Press, 2004. (in Chinese)
[16]   刘崇怀, 冯建灿, 姜建福. 中国葡萄属植物形态学聚类分组研究. 植物遗传资源学报, 2011, 12(6): 847-852.
Liu C H, Feng J C, Jiang J F. Cluster analysis of Chinese wild grape species based on morphological characters. Journal of Plant Genetic Resources, 2011, 12(6): 847-852. (in Chinese)
[17]   牛立新, 贺普超. 我国葡萄属野生种形态特性的研究. 葡萄栽培与酿酒, 1995, 75(4): 15-17.
Niu L X, He P C. Taxonomy classification of Chinese wild vitis plants. Sino-Overseas Grapevine & Wine, 1995, 75(4): 15-17. (in Chinese)
[18]   牛立新, 贺普超. 我国野生葡萄属植物系统分类研究. 园艺学报, 1996, 23(3): 209-212.
Niu L X, He P C. Study on morphological characteristics of Chinese wild species of grape. Acta Horticulturae Sinica, 1996, 23(3): 209-212. (in Chinese)
[19]   Vos J, Evers J B, Buck-Sorlin G H, Andrieu B, Chelle M, De Visser P. Functional-structural plant modelling: a new versatile tool in crop science. Journal of Experimental Botany, 2010, 61(8): 2101-2115.
[20]   袁晓敏, 赵春江, 温维亮, 郭新宇, 陆声链, 魏学礼. 番茄植株三维形态精确重构研究. 农业机械学报, 2012, 43(12): 204-210.
Yuan X M, Zhao C J, Wen W L, Guo X Y, Lu S L, Wei X L. Detailed modeling of 3-D configuration of tomato plant. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 204-210. (in Chinese)
[21]   赵春江, 陆声链, 郭新宇, 李长锋, 杨月英. 西瓜三维形态几何建模和真实感绘制技术研究. 中国农业科学, 2008, 41(12): 4155-4163.
Zhao C J, Lu S L, Guo X Y, Li C F, Yang Y Y. Techniques for modeling 3-D shape and realistic rendering of watermelon. Scientia Agricultura Sinica, 2008, 41(12): 4155-4163. (in Chinese)
[22]   郭新宇, 赵春江, 刘洋, 秦向阳, 邓旭阳, 孙广宇. 基于生长模型的玉米三维可视化研究. 农业工程学报, 2007, 23(3): 121-125.
Guo X Y, Zhao C J, Liu Y, Qin X Y, Deng X Y, Sun G Y. Three-dimensional visualization of maize based on growth models. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(3): 121-125. (in Chinese)
[23]   董乔雪, 王一鸣, Barczi J F, 贺超兴. 番茄形态结构模型参数的多目标拟合估算方法研究. 农业工程学报, 2006, 22(2): 1-5.
Dong Q X, Wang Y M, Barczi J F, He C X. Estimation method for model parameters of tomato morphological architecture by multi- targets plant fitting. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(2): 1-5. (in Chinese)
[24]   Fournier C, Andrieu B, Ljutovac S, Saint-Jean S. ADEL- wheat: a 3D architectural model of wheat development//2003 International Symposium on Plant Growth, Modeling, Simulation, Visualization and Their Applications, Beijing, 2003: 54-63.
[25]   李华. 葡萄栽培学. 北京: 中国农业出版社, 2008.
Li H. Viticulture. Beijing: China Agricultural Science and Technology Press, 2008. (in Chinese)
[26]   朱子英, 皇甫中泗, 常金华, 罗耀武. 四倍体玫瑰香葡萄形态特征与生长发育规律. 河北农业大学学报, 1995, 18(3): 5-9.
Zhu Z Y, Huangpu Z S, Chang J H, Luo Y W. The morphologic character and progress of growth of autotetraploid grape (Vitis vinifera L.) muscate hambury. Journal of Agricultural University of Hebei, 1995, 18(3): 5-9. (in Chinese)
[1] 温维亮,郭新宇,赵春江,肖伯祥,王勇健. 基于三维数字化的玉米株型参数提取方法研究[J]. 中国农业科学, 2018, 51(6): 1034-1044.
[2] 张在宝,李婉杰,李九丽,张弛,胡梦辉,程琳,袁红雨. 植物RNA结合蛋白研究进展[J]. 中国农业科学, 2018, 51(21): 4007-4019.
[3] 柴建民,王波,祁敏丽,王世琴,屠焰,陶晓菁,刁其玉,张乃锋. 不同开食料采食量断液体饲粮对羔羊生长发育的影响[J]. 中国农业科学, 2018, 51(2): 341-350.
[4] 白由路. 高效施肥技术研究的现状与展望[J]. 中国农业科学, 2018, 51(11): 2116-2125.
[5] 郑伟,肖国滨,肖小军,李亚贞,陈明,刘小三,黄天宝,吴艳,叶川,朱昌兰. 稻茬高度对谷林套播油菜生长发育及产量形成的影响[J]. 中国农业科学, 2017, 50(4): 648-656.
[6] 丁金凤,徐春梅,张正群,赵云贺,刘峰,慕卫. 溴氰虫酰胺对双委夜蛾生长发育、繁殖和营养利用的影响[J]. 中国农业科学, 2017, 50(22): 4307-4315.
[7] 闫硕,熊晓菲,褚艳娜,李贞,巫鹏翔,杨清坡,崔维娜,徐金涛,徐丽霞,张青文,刘小侠. 异色瓢虫胁迫对棉铃虫生长发育及压力蛋白基因表达的影响[J]. 中国农业科学, 2017, 50(21): 4118-4128.
[8] 巩校东,刘星晨,赵立卿,郑亚男,范永山,韩建民,谷守芹,董金皋. 高渗胁迫对玉米大斑病菌生长发育的影响及菌丝细胞中渗透调节物质的分析[J]. 中国农业科学, 2017, 50(10): 1922-1929.
[9] 王幸,吴存祥,齐玉军,徐泽俊,王宗标,韩天富. 麦秸处理和播种方式对夏大豆农艺性状及土壤物理性状的影响[J]. 中国农业科学, 2016, 49(8): 1453-1465.
[10] 杨亮,吕健强,罗清尧,熊本海. 规模化奶牛场数字化网络管理平台开发与应用[J]. 中国农业科学, 2015, 48(7): 1428-1436.
[11] 张婷,师志刚,王根平,程汝宏,陈媛,冀小绵,杨伟红. 咪唑乙烟酸对冀谷33生长发育的影响及对后茬作物的安全性[J]. 中国农业科学, 2015, 48(24): 4916-4923.
[12] 高英波,陶洪斌,朱金城,黄收兵,徐彩龙,盛耀辉,王璞. 麦茬高度对机播夏玉米苗期生长及水分利用的影响[J]. 中国农业科学, 2015, 48(19): 3803-3810.
[13] 赵春江,陆声链,郭新宇,杜建军,温维亮,苗腾. 数字植物研究进展:植物形态结构三维数字化[J]. 中国农业科学, 2015, 48(17): 3415-3428.
[14] 陈信信1, 丁启朔1, 2, 丁为民1, 田永超2, 朱艳2, 曹卫星2. 基于虚拟植物技术的冬小麦根系3D构型测试与分析[J]. 中国农业科学, 2014, 47(8): 1481-1488.
[15] 王玉宏, 李保同, 汤丽梅. 铜胁迫对亚洲玉米螟生长发育与生殖的影响[J]. 中国农业科学, 2014, 47(3): 473-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!