中国农业科学 ›› 2015, Vol. 48 ›› Issue (10): 1942-1954.doi: 10.3864/j.issn.0578-1752.2015.10.007

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

气温变化背景下中国黄淮旱地冬小麦农艺性状的变化特征 ——以山西临汾为例

刘新月1,裴磊1,卫云宗1,张正斌2,高辉明2,徐萍2   

  1. 1山西省农业科学院小麦研究所,山西临汾 041000
    2中国科学院遗传与发育生物学研究所农业资源研究中心,石家庄 050021
  • 收稿日期:2014-09-27 出版日期:2015-05-16 发布日期:2015-05-16
  • 通讯作者: 张正斌,卫云宗;E-mail:zzb@sjziam.ac.cn,weiyzong@163.com E-mail:zzb@sjziam.ac.cn; weiyzong@163.com
  • 作者简介:刘新月,E-mail:liu-xinyue@163.com
  • 基金资助:
    国家重点基础发展研究计划(“973”计划)(2010CB951501)、国家高技术研究发展计划(“863”计划)(2011AA100501)、山西省农业科学院育种工程(11yzgc054)

Agronomic Traits Variation Analysis of Huanghuai Dryland Winter Wheat under Temperature Change Background in China ——Taking Linfen, Shanxi as an Example

LIU Xin-yue1, PEI Lei1, WEI Yun-zong1, ZHANG Zheng-bin2, GAO Hui-ming2, XU Ping2   

  1. 1Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen 041000, Shanxi
    2Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021
  • Received:2014-09-27 Online:2015-05-16 Published:2015-05-16

摘要: 【目的】作物品种选育是在气候变化背景下的自然选择和人工选择的结果。黄淮麦区是中国最大的麦区,在保障中国小麦生产和粮食安全中有重要作用。研究过去30年黄淮旱地冬小麦品种农艺性状和气温要素变化规律,为旱地小麦育种适应未来气候变化提供理论依据和技术支撑。【方法】利用近30年来国家黄淮旱地冬小麦区域试验典型代表临汾点的对照品种农艺性状及该市的气温资料,研究对照品种农艺性状、生育期平均气温和≥0℃积温的变化规律,并进行农艺性状和气象要素的相关、多元回归和通径分析。【结果】小麦生育期的平均气温、≥0℃积温、最低和最高温度在逐年呈缓慢增加。小麦生育期平均气温平均每年上升0.05℃,≥0℃积温平均每年上升21.9℃,且二者呈正相关关系。≥0℃积温变化更能深入反映小麦生育期的温度变化情况。小麦生育期最高气温平均每年上升0.02℃、最低气温平均每年上升0.16℃。播种至越冬前的平均气温和≥0℃积温增加最多,营养生长阶段平均气温和≥0℃积温增加明显,生殖生长阶段平均气温增加较少且≥0℃积温有下降趋势。随着气候变暖,分蘖多的强冬性品种逐渐被分蘖适中的冬性和弱冬性品种替代。1986—1996年对照品种农艺性状变化幅度不大,1997—2007年期间变化较大,2007—2014年变化幅度最大;这和小麦生育期平均气温变化趋势基本相同。黄淮旱地对照品种千粒重和穗粒数逐年缓慢上升,分别每年平均增加1.57%和3.39%。有效穗数和产量及株高缓慢下降,分别每年平均下降0.16%和1.29%。产量与株高(0.684**)、有效穗(0.531**)和千粒重(0.541**)均极显著正相关。株高、起身至拔节期≥0℃积温和平均气温是决定小麦产量的3个主要因子,分别决定了小麦产量的46.73%、26.17和3.26%的变异。在黄淮旱地小麦适应气候变化中,起身至拔节期≥0℃积温和株高对产量贡献较大且为正效应;起身至拔节期平均气温为负效应。【结论】气候变暖对黄淮旱地冬小麦农艺性状变化趋势有较强的影响,选育株高和有效穗数适中、穗粒数较多、千粒重较大的中高产抗旱品种是黄淮旱地小麦适应未来气候变化的育种改良方向。

关键词: 黄淮, 旱地, 冬小麦, 农艺性状, 气候变化

Abstract: 【Objective】Crop variety breeding was result from nature and artificial selection under climate change background. Huanghuai wheat region is the largest wheat region in China, that plays an important role for ensure wheat production and food security in China. The changes of agronomic traits of winter wheat and temperature in Huanghuai dryland in the past 30 years were studied in order to provide a theoretical basis and technological support for dryland wheat breeding to adapt to climate changes in the future. 【Method】 The agronomic traits data of control varieties and temperature data of Linfen in Shanxi province in the past 30 years were analyzed. Linfen is the national representative Huanghuai dryland winter wheat regional test site. The regularity of the main temperature traits of Linfen city, such as the average temperature and over 0 accumulated temperature in winter wheat growth, and agronomic traits of control varieties change trends were analyzed. The relationship between agronomic traits and meteorological elements were also analyzed by correlation, multiple regression and path analysis. 【Result】 The average temperature,over 0 accumulated temperature,the highest and lowest temperature was increased slowly year by year in wheat growth period. In wheat growth period, the average temperature was increased average 0.05 per year, over 0 accumulated temperature was increased average 21.9per year,there was positive relationship between the average temperature and over 0 accumulated temperature. Over 0 accumulated temperature change can reflect temperature change in whole wheat growth period. The highest and lowest temperature was increased 0.02and 0.16per year respectively. The average temperature and over 0 accumulated temperature was increased markedly from sowing to before the winter, the average temperature and over 0 accumulated temperature was increased significantly at vegetative growth stage, but were increased lightly and had a downward trend at reproductive stage. With climate warming, strong winter variety with more tillers was replaced gradually by winter and weak winter variety with moderate tiller. Agronomic traits of control variety were changed not much from 1986 to 1996, and changed greatly from 1997 to 2007, and changed markedly from 2007 to 2014, this change trend consist with temperature change trend in wheat growth period. In evolution of agronomic traits of Huanghuai dryland control varieties, the thousand-kernel-weight and kernels per spike was increased average 1.57% and 3.39% per year respectively, but the effective ear numbers and plant height as well grain yield were decreased average slowly 0.16% and 1.29% per year respectively. There was a significant positive correlation between grain yield and plant height (0.684**), effective ear number (0.531**) and thousand-seed-weight (0.541**). There were 46.73%, 26.17% and 3.26% variation of grain yield was decided by three main factors such as plant height and over 0 accumulated temperature as well as the average temperature from standing to jointing stage respectively. In Huanghuai dryland wheat high-yield breeding evolution, the over 0 accumulated temperature from standing to jointing stage and plant height had a higher positive effect on grain yield, but the average temperature from standing to jointing stage had a negative effect on grain yield. 【Conclusion】 The climate warming had a strong impact on agronomic traits evolution in Huanghuai dryland winter wheat region, selecting new wheat varieties with agronomic traits of middle plant height, middle effective ears numbers, more kernels per spike, and high grain weight is the improvement direction of middle-high yield and drought-resistant varieties in Huanghuai dryland wheat region for adapting to climate change in the future.

Key words: Huanghuai, dryland, winter wheat, agronomic traits, climate change

[1]    姜大膀, 王会军, 郎咸梅. 全球变暖背景下东亚气候变化的最新情景预测. 地球物理学报, 2004, 47(4): 590-596.
Jiang D B, Wang H J, Lang X M. East Asian climate change trend under global warming background. Chinese Journal of Geophysics, 2004, 47(4): 590-596. (in Chinese )
[2]    Jones P D, Osborn T J, Briffa K R. The evolution of climate over the last millennium. Science, 2001, 292(5517): 662-667.
[3]    Oseni T O, Masarirambi M T. Effect of climate change on maize (Zea mays) production and food security in Swaziland. American-Eurasian Journal of Agricultural and Environmental Sciences, 2011, 11(3): 385-391.
[4]    黄美丽, 林振敏, 丘平珠, 黄雪松, 陈德诚. 广西气候变暖及其对农业的影响. 山地农业生物学报, 2008, 27(3): 200-206.
Huang M L, Lin Z M, Qiu P Z, Huang X S, Chen D C. Global warming and its influences on agriculture in Guangxi. Journal of Mountain Agriculture and Biology, 2008, 27(3): 200-206. (in Chinese )
[5]    杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响Ⅰ. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43(2): 329-336.
Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China Ⅰ. The possible effects of climate warming on Northern limits of cropping systems and crop yields in China. Scientia Agricultura Sinica, 2010, 43(2): 329-336. (in Chinese )
[6]    张正斌, 王德轩. 小麦抗旱生态育种. 西安: 陕西人民教育出版社, 1992.
Zhang Z B, Wang D X. Wheat Drought Resistance and Ecology Breeding. Xi’an, Shaanxi People Education Press, 1992. (in Chinese )
[7]    高懋芳, 邱建军 刘三超, 覃志豪, 王立刚. 我国低温冷冻害的发生规律分析. 中国生态农业学报, 2008, 16(5): 1167-1172.
Gao M F, Qiu J J, Liu S C, Qin Z H, Wang L G. Spatio-temporal pattern of cold and frost damage in China. Chinese Journal of Eco-Agriculture, 2008, 16(5): 1167-1172. (in Chinese )
[8]    丁一汇, 王守荣. 中国西北地区气候与生态环境概论. 北京: 气象出版社, 2001: 77-154.
Ding Y H, Wang S R. Introduction to Climate and Ecological Environment for Northwest China. Beijing: China Meteorological Press, 2001: 77-154. (in Chinese )
[9]    王绍武, 董光荣. 中国西部环境演变评估1C2//秦大河. 中国西部环境特征及其演变: 第一卷. 北京: 科学出版社, 2002: 71-145.
Wang S W, Dong G R. Assessment of environmental changes in Western China 1C2.//Qin D H. Environmental Characteristics and Its Evolution in Western China: Vol 1. Beijing: Science Press, 2002: 71-145. (in Chinese )
[10]   陶健红, 王遂缠, 王宝鉴. 中国西北地区气温异常的特征分析. 干旱区研究, 2007, 24(4): 510-515.
Tao J H, Wang S C, Wang B J. Analysis on the abnormity of air temperature in northwest China. Arid Zone Research, 2007, 24(4): 510- 515. (in Chinese )
[11]   高振荣, 田庆明, 刘晓云, 王秀芬, 杨庆华. 近58年河西走廊地区气温变化及突变分析. 干旱区研究, 2010, 27 (2) : 194-203.
Gao Z R, Tian Q M, Liu X Y, Wang X F, Yang Q H. Characteristics and abrupt change of temperature in the Hexi corridor in recent 58 years. Arid Zone Research, 2010, 27(2): 194-203. (in Chinese )
[12]   王劲松, 费晓玲, 魏锋. 中国西北近50a来气温变化特征的进一步研究. 中国沙漠, 2008, 28(4): 724-732.
Wang J S , Fei X L, Wei F. Further study of temperature change in Northwest China in recent 50 years. Journal of Desert Research, 2008, 28(4): 724-732. (in Chinese )
[13]   李玲萍, 杨永龙, 钱莉. 石羊河流域近45年气温和降水特征分析. 干旱区研究, 2008, 25(5): 705-710.
Li L P, Yang Y L, Qian L. Analysis on the characteristics of temperature and precipitation in the Shiyang river basins in recent 45 years. Arid Zone Research, 2008, 25(5): 705-710. (in Chinese )
[14]   Lobell D B, Field C B. Global scale climate-crop yield relationships and the impact of recent warming. Environmental Research Letters. 2007, 2(1): 1-7.
[15]   Tao, F L, Yokozawa M, Xu Y L, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agricultural and Forest Meteorology, 2006, 138(14): 82-92.
[16]   Ghaffari A, Cook H F, Lee H C. Climate change and winter wheat management: a modeling scenario for south-eastern England. Climatic Change, 2002, 55: 509-533.
[17]   Nicholls N. Increased Australian wheat yield due to recent climate trends. Nature, 1997, 387(29): 484-485.
[18]   Lal M, Singh K K, Rathore L S, Srinivasan G, Saseendran S A. Vulnerability of rice and wheat yields in NW India to future changes in climate. Agricultural and Forest Meteorology, 1998, 89: 101-114.
[19]   Mavromatis T, Jones P D. Evaluation of HadCM2 and direct use of daily GCM data in impact assessment studies. Climatic Change, 1999, 41: 583-614.
[20]   Ye L M, Xiong W, Li Z G, Yang P, Wu W B, Yang G X, Fu Y J, Zou J Q, Chen Z X, Ranst E V, Tang H J. Climate change impact on china food security in 2050. Agronomy Sustain Development, 2013, 33: 363-374.
[21]   杜瑞英, 杨武德, 许呤隆, 冯强. 气候变化对我国干旱半干旱区小麦生产影响的模拟研究. 生态科学, 2006, 25(1): 34-37.
Du R Y, Yang W D, Xu Y L, Feng Q. Simulation study on impacts of climate change on the production of wheat. Ecologic Science, 2006, 25(1): 34-37. (in Chinese )
[22]   Holger K, Holger T. Challenging targets for future agriculture. European Journal of Agronomy, 2000, 12(3): 145-161.
[23]   Tao F L, Yokozawa Masayuki, Xu Y L, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agricultural and Forest Meteorology, 2006, 138(1): 82-92.
[24]   Garcia-Mozo H, Mestre A, Galan C. Phenological trends in southern Spain: a response to climate change. Agricultural and Forest Meteorology, 2010, 150: 575-580.
[25]   王修兰, 徐师华, 崔读昌. CO2浓度倍增及气候变暖度农业生产影响的诊断与评估. 中国生态农业学报, 2003, 11(4): 47-48.
Wang X L, Xu S H, Cui D C. The diagnosis and estimation of CO2 concentration increasing and climate warming on the agricultural production. Chinese Journal of Eco-Agriculture, 2003, 11(4): 47-48. (in Chinese )
[26]   杨国航, 唐世伟, 季广德, 孙世贤. 国家玉米品种试验中对照品种更迭与发展. 玉米科学, 2010, 18(4): 49-51, 57.
Yang G H, Tang S W, J G D, Sun S X. Change and development of check in maize varieties plot trial at state-level. Journal of Maize Sciences, 2010, 18(4): 49-51, 57. (in Chinese)
[27]   王洁, 廖琴, 胡小军, 万建民. 北方稻区国家水稻品种区域试验精确度分析. 作物学报, 2010, 36(11): 1870-1876.
Wang J, Liao Q, Hu X J, Wan J M. Precision evaluation of rice variety regional trials in northern China. Acta Agronomica Sinica, 2010, 36(11): 1870-1876. (in Chinese) 
[28]   Mba C, Guimaraes E P, Ghosh K. Re-orienting crop improvement for the changing climatic conditions of the 21st Century. Agriculture and Food Security, 2012, 1(1): 7.
[29]   Collette L. Save and grow-a policy Maker's guide to the sustainable intensification of smallholder crop production. Food and Agriculture Organization of the United Nations, 2011: 7-10.
[30]   高辉明, 张正斌, 杨引福, 卫云宗, 刘新月. 2001-2009年北部冬麦区小麦品种农艺性状变化, 中国农业科学, 2013, 46(11): 2201-2210.
Gao H M, Zhang Z B, Xu P, Yang Y F, Wei Y Z, Liu X Y. Changes of winter wheat growth period and yield in northern China from 2001-2009. Scientia Agricultura Sinica, 2013, 46(11): 2201-2210. (in Chinese)
[31]   张丽英, 张正斌, 徐萍, 卫云宗, 刘新江. 黄淮小麦农艺性状进化及对产量性状调控机理分析, 中国农业科学, 2014, 47(5): 1013-1028.
Zhang LY, Zhang Z B, Xu P, Wei Y Z, Liu X J. Evolution of agronomic traits of wheat and analysis of the mechanism of agronomic traits controlling the yield traits in the Huang-Huai Plain. Scientia Agricultura Sinica, 2014, 47(5): 1013-1028. (in Chinese)
[32]   王玉莹, 张正斌, 杨引福, 王敏, 赵久然, 杨国航. 2002-2009东北早熟春玉米生育期及产量变化, 中国农业科学, 2012, 45(24): 4959-4966.
Wang Y Y, Zhang Z B, Yang Y F, Wang M, Zhao J R, Yang G H. Growth period and yield of early-maturing spring maize in northeast China from 2002-2009. Scientia Agricultura Sinica, 2012, 45(24): 4959-4966. (in Chinese)
[33]   姬兴杰, 朱业玉, 刘晓迎, 熊淑萍, 王鸽. 气候变化对北方冬麦区冬小麦生育期的影响. 中国农业气象, 2011, 32(4): 576-581.
Ji X J, Zhu Y Y, Liu X Y, Xiong S P, Wang G. Impact of climate change on the winter wheat growth stages in North China. Chinese Journal of Agrometeorology, 2011, 32(4): 576-581. (in Chinese)
[34]   Sadras V O, Monzon J P. Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina. Field Crops Research, 99(2/3): 136-146.
[35]   张正斌. 作物抗旱节水的生理遗传育种基础. 北京: 科学出版社, 2003: 45-48.
Zhang Z B. Physiology and Genetics and Breeding Base of Crop Drought Resistance and Water Saving. Beijing: Science press, 2003: 45-48. (in Chinese)
[36]   李朴芳, 程正国, 赵鸿, 张小丰, 李冀南, 王绍明, 熊又才. 旱地小麦理想株型研究进展. 生态学报, 2011, 31(9): 2631-2640.
Li P F, Cheng Z G, Zhao Hong, Zhang X F, Li J N, Wang S M, Xiong Y C. Current progress in plant ideal type research of dryland wheat. Acta Ecological Sinica, 2011, 31(9): 2631-2640. (in Chinese)
[1] 夏梦洁,马乐乐,师倩云,陈竹君,周建斌. 黄土高原旱地夏季休闲期土壤硝态氮淋溶与降水年型间的关系[J]. 中国农业科学, 2018, 51(8): 1537-1546.
[2] 张春兰,杨贵军,李贺丽,汤伏全,刘畅,张丽妍. 基于随机森林算法的冬小麦叶面积指数遥感反演研究[J]. 中国农业科学, 2018, 51(5): 855-867.
[3] 杨珺雯,张锦水,潘耀忠,孙佩军,朱爽. 基于遥感识别误差校正面积的农作物种植面积抽样高效分层指标研究——以冬小麦为例[J]. 中国农业科学, 2018, 51(4): 675-687.
[4] 刘苡轩,黄冬琳,刘娜,姚致远,尹丹,蒙元永,赵护兵,高亚军,王朝辉. 渭北旱塬豆科绿肥提高冬小麦籽粒锌的效应与影响因素研究[J]. 中国农业科学, 2018, 51(21): 4030-4039.
[5] 张青松,卢殿君,岳善超,占爱,崔振岭. 华北地区高产冬小麦氮磷钾养分需求特征[J]. 中国农业科学, 2018, 51(20): 3840-3851.
[6] 林海涛,李彦,刘兆辉,沈玉文,江丽华,谭德水,宋效宗,刘苹. 水性树脂包膜尿素氮素释放与冬小麦氮素吸收匹配特征[J]. 中国农业科学, 2018, 51(20): 3852-3862.
[7] 江丽华,谭德水,李子双,李宗新,郭建华,孙克刚,李妮,徐钰,杨岩,石璟,王梅,刘兆辉. 黄淮海平原夏玉米一次性施肥肥料产品的筛选与产量效应[J]. 中国农业科学, 2018, 51(20): 3876-3886.
[8] 谭德水,林海涛,朱国梁,李子双,郭清福,吴小宾,刘兆辉. 黄淮海东部冬小麦一次性施肥的产量效应[J]. 中国农业科学, 2018, 51(20): 3887-3896.
[9] 杨岩,谭德水,江丽华,郭建华,孙克刚,徐钰,石璟,王梅,刘兆辉. 黄淮海夏玉米一次性施肥技术效应研究[J]. 中国农业科学, 2018, 51(20): 3909-3919.
[10] 李法计,徐学欣,何中虎,肖永贵,陈新民,王志敏. 三种限水灌溉水平下中麦175干物质积累与水分利用特性解析[J]. 中国农业科学, 2018, 51(2): 374-385.
[11] 李念念,孙敏,高志强,张娟,张慧芋,梁艳妃,杨清山,杨珍平,邓妍. 极端年型旱地麦田深松和覆盖播种水分消耗与植株氮素吸收、利用关系的研究[J]. 中国农业科学, 2018, 51(18): 3455-3469.
[12] 武永峰,胡新,任德超,史萍,游松财. 晚霜冻胁迫后冬小麦株高降低及其与籽粒产量关系[J]. 中国农业科学, 2018, 51(18): 3470-3485.
[13] 束美艳,顾晓鹤,孙林,朱金山,杨贵军,王延仓,张丽妍. 基于新型植被指数的冬小麦LAI高光谱反演[J]. 中国农业科学, 2018, 51(18): 3486-3496.
[14] 金柳艳,郭宁,石洁,张海剑,刘树森,张家齐. 黄淮海夏玉米区玉米籽粒带菌检测分析[J]. 中国农业科学, 2018, 51(18): 3508-3519.
[15] 张镇涛,杨晓光,高继卿,王晓煜,白帆,孙爽,刘志娟,明博,谢瑞芝,王克如,李少昆. 气候变化背景下华北平原夏玉米适宜播期分析[J]. 中国农业科学, 2018, 51(17): 3258-3274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!