中国农业科学 ›› 2014, Vol. 47 ›› Issue (7): 1330-1340.doi: 10.3864/j.issn.0578-1752.2014.07.010

• 昆虫几丁质代谢与植物保护 • 上一篇    下一篇

飞蝗几丁质合成酶2基因的表达特性、功能及调控

 刘晓健, 崔淼, 李大琪, 张欢欢, 杨美玲, 张建珍   

  1. 山西大学应用生物学研究所,太原 030006
  • 收稿日期:2013-10-24 出版日期:2014-04-01 发布日期:2013-11-05
  • 通讯作者: 张建珍,Tel:0351-7018871;E-mail:zjz@sxu.edu.cn E-mail:zjz@sxu.edu.cn
  • 作者简介:刘晓健,Tel:0351-7017846;E-mail:xiaojianliu1983@126.com
  • 基金资助:

    国家自然科学基金项目(31100925,31272380)、山西省高等学校留学回国人员科研资助项目(201163)、山西省科学技术发展计划项目(20110311010)

Expression, Function and Regulation of Chitin Synthase 2 Gene in Locusta migratoria

 LIU  Xiao-Jian, CUI  Miao, LI  Da-Qi, ZHANG  Huan-Huan, YANG  Mei-Ling, ZHANG  Jian-Zhen   

  1. Research Institute of Applied Biology, Shanxi University, Taiyuan 030006
  • Received:2013-10-24 Online:2014-04-01 Published:2013-11-05

摘要: 【目的】几丁质合成酶(chitin synthase,CHS)是昆虫几丁质合成过程中的关键酶之一,由于高等动物不存在该酶,而被认为是设计安全高效杀虫剂的潜在靶标。论文在已克隆得到飞蝗几丁质合成酶2基因cDNA序列(LmCHS2,GenBank登录号:GU067731)的基础上,进一步深入探讨该基因在不同发育时期的表达特性、功能及调控,为基于RNA干扰技术的飞蝗有效控制提供科学依据。【方法】根据已知LmCHS2 基因核苷酸序列,设计特异性表达引物,运用RT-qPCR技术研究该基因在卵、若虫及成虫期的表达特性;体外合成LmCHS2的dsRNA后,分别注射至成虫期第1天的雌虫和雄虫,收集第5天的中肠样本提取RNA,反转录成cDNA后,采用RT-qPCR方法检测LmCHS2沉默效果。解剖飞蝗整个肠道后,观察中肠的形态变化及围食膜的完整性,探讨该基因在成虫期的生物学功能;饥饿处理飞蝗不同时间后,再重新进食,观察试虫肠道的变化,进一步运用RT-qPCR技术检测LmCHS2的表达。【结果】LmCHS2在飞蝗卵发育的前期和中期几乎没有可检测到的表达,卵发育后期表达量急剧上升,在4龄、5龄若虫和成虫期稳定表达;分别对羽化后第1天的雌、雄成虫注射dsCHS2,与对照组相比,处理组试虫LmCHS2表达量均显著下降,且取食量明显减少,雌虫和雄虫死亡率分别达78%和85%;解剖消化道后发现,注射dsCHS2后飞蝗中肠几乎不含有食物,中肠和胃盲囊长度显著缩短;对中肠的组织学观察结果表明对照组飞蝗围食膜发育完整,而注射dsCHS2后围食膜被严重破坏甚至缺失;饥饿处理飞蝗48 h后,与对照组相比,饥饿组中肠几乎不含有食物,长度亦显著缩短。H&E染色结果表明,饥饿组围食膜被严重破坏,对照组围食膜结构完整,与RNAi的结果非常相似;重新进食后围食膜发育良好;饥饿处理24 h和48 h后LmCHS2的表达被显著抑制,重新进食0.5 h后,其表达量快速上调,表明进食影响LmCHS2的表达。【结论】LmCHS2参与中肠围食膜的形成,对飞蝗的生长发育至关重要,该基因的沉默影响中肠围食膜的完整性,使飞蝗对食物的消化吸收困难,最终因饥饿而死亡;此外,该基因的表达受飞蝗进食的调控。

关键词: 飞蝗 , 几丁质合成酶2基因 , 表达特性 , RNA干扰 , 调控

Abstract: 【Objective】Chitin synthase is one of the key enzymes responsible for chitin synthesis in insects. As this enzyme is absent in higher animals, it could be served as a potential target for developing safe and effective insecticides. In our earlier research, the cDNA of chitin synthase 2 gene (LmCHS2, GenBank accession number: GU067731) in Locusta migratoria was cloned. The objectives of this paper are to further study the expression, function and regulation of LmCHS2, and to provide a scientific basis for effective pest control using RNAi methods.【Method】Based on the nucleotide sequence of LmCHS2, a pair of specific expression primers was designed, the expression patterns of LmCHS2 were studied in eggs, nymphs and adults by RT-qPCR. The dsRNA of LmCHS2 was synthesized in vitro, and then injected into the female or male adults on day 1, respectively. The midguts dissected from the injected insects on day 5 were pooled for each RNA extraction. cDNA synthesis and RT-qPCR were performed to determine the down-regulation of LmCHS2. After dissected the whole gut, the midgut changes and integrity of peritrophic matrix (PM) were observed to explore the biological functions of this gene in L. migratoria adults. Locusts were maintained with no food in different times, and feeding again, to observe the changes of guts. Then the transcript levels of LmCHS2 were detected by RT-qPCR. 【Result】 LmCHS2 was almost undetectable during the early and middle embryogenesis, but dramatically up-regulated in late eggs. It was consistently expressed throughout the nymphal and adult stages. After dsCHS2 was injected into the female or male adults on day 1, significantly reduced transcript of LmCHS2 was observed as compared with that of the controls, and resulted in a decreased feeding and a high mortality of insects (78% for female and 85% for male adults). After dissection, it was found that there was virtually no food contained in dsCHS2-injected insects and the average length of midguts and gastric caeca was shorter than that of the control. Furthermore, histological observation of midguts showed that the control locusts contained a fully developed PM, however, locusts injected with dsCHS2 exhibited a disrupted PM or even absence of the PM. Locusts were treated under starvation for 48 h, the midguts hardly contained food and the average length of midguts was significantly shorter than that of the control midguts. From the H & E stained results, it was found that the PM was almost absent in non-fed midguts while the PM of control midguts was well-structured, which was very similar with the RNAi. But after fed again, the insects contained a fully developed PM. When locusts were maintained with no food for 24 h and 48 h, the transcript levels of LmCHS2 were suppressed significantly. When locusts were fed for another 0.5 h period, the transcript levels increased to the control level rapidly, which suggested that feeding affected the expression of LmCHS2. 【Conclusion】LmCHS2 is responsible for chitin biosynthesis of peritrophic matrix of the midgut and plays a key role for the development of L. migratoria. The decreased expression of this gene affected the integrity of the PM, thus hindered the food absorption and led to the mortality of the locusts. In addition, feeding regulated the expression of LmCHS2.

Key words: Locusta migratoria , chitin synthase gene , expression characteristics , RNA interference , regulation

[1]Yang M L, Zhang J Z, Zhu K Y, Xuan T, Liu X J, Guo Y P, Ma E B. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Archives of Insect Biochemistry and Physiology, 2009, 71(1): 3-15.

[2]Ma E B, He Y P, Zhu K Y. Comparative studies of acetylcholinesterases purified from two field populations of the oriental migratory locust (Locusta migratoria manilensis): implications of insecticide resistance. Pesticide Biochemistry and Physiology, 2004, 78: 67-77.

[3]Cohen E. Chitin synthesis and inhibition: a revisit. Pest Management Science, 2001, 57(10): 946-950.

[4]Tellam R L, Vuocolo T, Johnson S E, Jarmey J, Pearson R D. Insect chitin synthase cDNA sequence, gene organization and expression. European Journal of Biochemistry, 2000, 267(19): 6025-6042.

[5]Ostrowski S, Dierick H A, Bejsovec A. Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics, 2002, 161(1): 171-182.

[6]Gagou M E, Kapsetaki M, Turberg A, Kafetzopoulos D. Stage-specific expression of the chitin synthase DmeChSA and DmeChSB genes during the onset of Drosophila metamorphosis. Insect Biochemistry and Molecular Biology, 2002, 32(2): 141-146.

[7]Hogenkamp D G, Arakane Y, Zimoch L, Merzendorfer H, Kramer K J, Beeman R W, Kanost M R, Specht C A, Muthukrishnan S. Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development. Insect Biochemistry and Molecular Biology, 2005, 35(6): 529-540.

[8]Arakane Y, Hogenkamp D G, Zhu Y C, Kramer K J, Specht C A, Beeman R W, Kanost M R, Muthukrishnan S. Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochemistry and Molecular Biology, 2004, 34(3): 291-304.

[9]Qu M, Yang Q. A novel alternative splicing site of class A chitin synthase from the insect Ostrinia furnacalis-gene organization, expression pattern and physiological significance. Insect Biochemistry and Molecular Biology, 2011, 41(12): 923-931.

[10]Qu M, Liu T, Yang J, Yang Q. The gene, expression pattern and subcellular localization of chitin synthase B from the insect Ostrinia furnacalis. Biochemical and Biophysical Research Communications, 2011, 404(1): 302-307.

[11]Chen X, Yang X, Kumar N S, Tang B, Sun X, Qiu X, Hu J, Zhang W. The class A chitin synthase gene of Spodoptera exigua: molecular cloning and expression patterns. Insect Biochemistry and Molecular Biology, 2007, 37(5): 409-417.

[12]Kumar N S, Tang B, Chen X, Tian H, Zhang W. Molecular cloning, expression pattern and comparative analysis of chitin synthase gene B in Spodoptera exigua. Comparative Biochemistry and Physiology, Part B, 2008, 149(3): 447-453.

[13]Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. The Journal of Experimental Biology, 2003, 206(24): 4393-4412.

[14]Merzendorfer H. Insect chitin synthases: a review. Journal of Comparative Physiology B, 2006, 176(1): 1-15.

[15]Arakane Y, Muthukrishnan S, Kramer K J, Specht C A, Tomoyasu Y, Lorenzen M D, Kanost M, Beeman R W. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Molecular Biology, 2005, 14(5): 453-463.

[16]Arakane Y, Specht C A, Kramer K J, Muthukrishnan S, Beeman R W. Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2008, 38(10): 959-962.

[17]Ibrahim G H, Smartt C T, Kiley L M, Christensen B M. Cloning and characterization of a chitin synthase cDNA from the mosquito Aedes aegypti. Insect Biochemistry and Molecular Biology, 2000, 30(12): 1213-1222.

[18]Zhang J Z, Liu X J, Li D Q, Sun Y, Guo Y P, Ma E B, Zhu KY. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochemistry and Molecular Biology, 2010, 40(11): 824-833.

[19]Liu X J, Zhang H H, Li S, Zhu K Y, Ma E B, Zhang J Z. Characterization of a midgut-speci?c chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria. Insect Biochemistry and Molecular Biology, 2012, 42: 902-910.

[20]Zhang X, Zhang J Z, Park Y, Zhu K Y. Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2012, 42(9): 674-682.

[21]Kato N, Mueller C R, Fuchs J F, Wessely V, Lan Q, Christensen B M. Regulatory mechanisms of chitin biosynthesis and roles of chitin in peritrophic matrix formation in the midgut of adult Aedes aegypti. Insect Biochemistry and Molecular Biology, 2006, 36(1): 1-9.

[22]Zhang X, Zhang J Z, Zhu K Y. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology, 2010, 19(5): 683-693.

[23]Baehr J C, Porcheron P, Papillon M, Dray F. Haemolymph levels of juvenile hormone, ecdysteroids and protein during the last two larval instars of Locusta migratoria. Journal of Insect Physiology, 1979, 25: 415-421.

[24]Khajuria C, Buschman L L, Chen M S, Muthukrishnan S, Zhu K Y. A gut-speci?c chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochemistry and Molecular Biology, 2010, 40(8): 621-629.

[25]李大琪, 杜建中, 张建琴, 郝耀山, 刘晓健, 王亦学, 马恩波, 张建珍, 孙毅. 东亚飞蝗几丁质酶家族基因的表达特性与功能研究. 中国农业科学, 2011, 44(3): 485-492.

Li D Q, Du J Z, Zhang J Q, Hao Y S, Liu X J, Wang Y X, Ma E B, Zhang J Z, Sun Y. Study on expression characteristics and functions of chitinase family genes from Locusta migratoria manilensis (Meyen). Scientia Agricultura Sinica, 2011, 44(3): 485-492. (in Chinese)
[1] 吴文斌,余强毅,陆苗,项铭涛,谢安坤,杨鹏,唐华俊. 耕地复种指数研究的关键科学问题[J]. 中国农业科学, 2018, 51(9): 1681-1694.
[2] 张丽丽,刘德兴,史庆华,巩彪. 黄腐酸对番茄幼苗适应低磷胁迫的生理调控作用[J]. 中国农业科学, 2018, 51(8): 1547-1555.
[3] 杨亚亭,赵小明,秦忠玉,刘卫敏,马恩波,张建珍. 飞蝗表皮蛋白基因LmNCP1的分子特性及功能分析[J]. 中国农业科学, 2018, 51(7): 1303-1314.
[4] 唐斌,张露,熊旭萍,汪慧娟,王世贵. 海藻糖代谢及其调控昆虫几丁质合成研究进展[J]. 中国农业科学, 2018, 51(4): 697-707.
[5] 植爽,任艳红,唐星,徐凤翔,王传宏,赵爱春,王茜龄. 桑树谷氨酸脱氢酶基因MaGDHs的克隆及表达分析[J]. 中国农业科学, 2018, 51(4): 758-769.
[6] 郭睿,杜宇,熊翠玲,郑燕珍,付中民,徐国钧,王海朋,陈华枝,耿四海,周丁丁,石彩云,赵红霞,陈大福. 意大利蜜蜂幼虫肠道发育过程中的差异表达microRNA及其调控网络[J]. 中国农业科学, 2018, 51(21): 4197-4209.
[7] 胡杰,王鑫怡,王菲. 家蚕BmCaspase-8-Like(BmCasp8L)的免疫负调控功能[J]. 中国农业科学, 2018, 51(21): 4188-4196.
[8] 宋慧芳,张建琴,范云鹤,李涛,马恩波,张建珍. 飞蝗双链RNA降解酶的抗体制备及组织定位[J]. 中国农业科学, 2018, 51(19): 3704-3713.
[9] 张瀛东,孔详超,黄文坤,孔令安,李红梅,彭焕,彭德良. 大豆孢囊线虫扩展蛋白新基因(Hg-exp-1、Hg-exp-2)的鉴定及功能分析[J]. 中国农业科学, 2018, 51(17): 3302-3314.
[10] 曾雅琼,王浩,刘作华,李爽,蒲施桦,龙定彪. 温热环境对母猪生产性能的影响及其调控技术研究进展[J]. 中国农业科学, 2018, 51(16): 3171-3180.
[11] 石雷,李云雷,孙研研,陈继兰. 光照节律调控鸡繁殖性能机制研究进展[J]. 中国农业科学, 2018, 51(16): 3191-3200.
[12] 许蓉,张媛媛,李肖纯,程贵凤,何川川,郭露,李浩,刘金明,古少鹏,金亚美. 日本血吸虫SjELAV-like 1的克隆、表达及功能分析 [J]. 中国农业科学, 2018, 51(13): 2600-2613.
[13] 张婷婷,柳伟伟,高璐,李任建,付穗业,刘晓健,李大琪,刘卫敏,董卿,张建珍. 飞蝗几丁质酶5-1抗体制备及表达特性分析[J]. 中国农业科学, 2018, 51(12): 2418-2428.
[14] 赵盼,张学尧,刘晓健,赵小明,于荣荣,董玮,马恩波,张建珍,张敏. 飞蝗几丁质脱乙酰基酶的真核表达、亲和纯化及酶活性[J]. 中国农业科学, 2017, 50(6): 1057-1066.
[15] 孙娟娟,于林清,赵金梅,刘洪林,张英俊. 盐分不均匀分布对紫花苜蓿生长和离子特征的影响[J]. 中国农业科学, 2017, 50(22): 4299-4306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!